DOI QR코드

DOI QR Code

Study on Characteristics of Shock Sensitivities of Pressable Plastic-Bonded Explosives(PBXs) Applying Multimodal Particle System

다성분 입자계를 적용한 압축형 복합화약의 ?감도특성 연구

  • Park, Haneul (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development)
  • Received : 2017.02.02
  • Accepted : 2017.06.20
  • Published : 2017.08.01

Abstract

In pressable polymer bonded explosives (PBXs), densification occurs due to rearrangement and deformation of explosive particles during pressing. If brittle explosives are compressed till particle fraction become higher than theoretical random close packing fraction (RCPF), bigger particles should be fractured to fill the void. In this study, multi-modal particle system was introduced for the decrease in possibility of particle fracture during compression expecting decrease in shock sensitivity of highly filled pressable PBX. The experimental results showed the trimodal particle system had low sensitivity with high density, compared to bimodal particle system.

압축형 복합화약에서는 압축 시 화약입자들의 재배열 및 변형으로 인하여 화약입자들의 압착화가 이루어지게 된다. 만약 깨지기 쉬운 화약입자들이 입자들의 최대 무질서밀집충진율보다 높아질 때까지 압축되면 큰 입자들은 깨짐으로써 빈 공간을 채울 수 밖에 없다. 본 연구에서는 다성분 입자계를 적용하여 압축 시 화약입자들의 손상을 막음으로써 둔감하면서도 고도로 충진된 압축형 복합화약을 얻고자 하였으며 실험결과, 2성분 입자계보다 3성분 입자계에서 더 고밀도이면서도 둔감한 ?감도를 갖는 압축형 복합화약을 얻을 수 있었다.

Keywords

References

  1. Field, J.E., "Hot Spot Ignition Mechanisms for Explosives," Accounts of Chemical Research, Vol. 25, No. 11, pp. 489-496, 1992. https://doi.org/10.1021/ar00023a002
  2. Belmas, R. and Plotard, J.P., "Physical Origin of Hot Spots in Pressed Explosive Compositions," Journal De Physicque IV Colloque, Vol. 5, No. C4, pp. C4-61-C4-87, 1995.
  3. Frey, R.B., "Cavity Collapse in Energetic Materials," US ARMY BRL-TR-2748, 1986.
  4. William, D.C.JR., Materials Science and Engineering an Introduction, 7th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 2007.
  5. Torquato, S., Truskett, T.M. and Debenedetti, P.G., "Is Random Close Packing of Spheres Well Defined?," Physical Review Letters, Vol. 84, No. 10, pp. 2064-2067, 2000. https://doi.org/10.1103/PhysRevLett.84.2064
  6. Kamien, R.D. and Liu. A.J., "Why is Random Close Packing Reproducible?," Physical Review Letters, Vol. 99, No. 15, pp. 155501-1-155501-4, 2007. https://doi.org/10.1103/PhysRevLett.99.155501
  7. Radin, C., "Random Close Packing of Granular Matter," Journal of Statistical Physics, Vol. 131, No. 4, pp. 567-573, 2008. https://doi.org/10.1007/s10955-008-9523-1
  8. Scott, G.D. and Kilgour, D.M., "The Density of Random Close Packing of Spheres," British Journal of Applied Physics, Vol. 2, No. 2, pp. 863-866, 1969.
  9. McGeary, R.K., "Mechanical Packing of Spherical Particles," Journal of American Ceramic Society, Vol. 44, No. 10, pp. 513-522, 1961. https://doi.org/10.1111/j.1151-2916.1961.tb13716.x
  10. Fiske, T.J., Railkar, S.B. and Kalyon, D.M., "Effects of Segregation on the Packing of Spherical and Nonspherical Particles," Powder Technology, Vol. 81, No. 1, pp. 57-64, 1994. https://doi.org/10.1016/0032-5910(94)02862-1
  11. Liu, S. and Ha, Z., "Prediction of Random Packing Limit for Multimodal Particle Mixtures," Powder Technology, Vol. 126, No. 3, pp. 283-296, 2002. https://doi.org/10.1016/S0032-5910(02)00075-X
  12. Hofmann, H. and Bowen, P., "Powder Technology from Landslides and Concrete to Avalanches and Chocolate," World Wide Web location http://ltp.epfl.files/content/sites/ ltp/files/shared/Teaching/Master/06-Powde rTech-02.pdf/, 2015.
  13. Glover, P.W.J., Petrophysics MSc Course Notes, Imperial College, London Boroughs, U.K., 2008.
  14. Donna, P., "Gap Tests and How They Grow," US NAVY AD-P005-315, 1986.