DOI QR코드

DOI QR Code

과채류 접목시스템 개선 연구

A Study on Performance Improvement of Fruit Vegetables Automatic Grafting System

  • 강동현 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 이시영 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 김종구 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박민정 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 손진관 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 윤성욱 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 안세웅 (농촌진흥청 국립원예특작과학원 원예작물부) ;
  • 정인규 (농업기술실용화재단 창업성장본부)
  • Kang, Dong Hyeon (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Si Young (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jong Koo (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Park, Min Jung (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Son, Jin Kwan (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Yun, Sung-Wook (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • An, Se Woong (Dept. of Horticultural Crop Research, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Jung, In Kyu (Dept. of Start-up Acceleration, Foundation of Agri. Tech. Commercialization & Transfer)
  • 투고 : 2017.07.07
  • 심사 : 2017.07.25
  • 발행 : 2017.07.31

초록

접수 및 대목 줄기의 회전 절단으로 인한 접목 불량 발생 가능성에 대한 문제점을 해결하기 위하여 수학적 분석 및 고속카메라를 이용하여 실측한 결과 칼날 회전반경 50mm이고 줄기직경이 5mm 일 때, 깊이는 0.11mm인 것으로 계산되어 줄기부 곡면 절단에 따른 문제는 없을 것으로 사료된다. 또한 접목시스템에서 모종 줄기를 잡는 그립퍼의 최적 형상 설계를 위하여 실시한 모종 줄기 압축시험 결과 대목의 경우 0.8mm 이상, 접수의 경우 0.6mm 이상의 범위에서 줄기부를 압축 할 경우 이전 형상으로 완전히 복원되지 않는 것으로 조사되어 그립퍼 형상 설계 시 그럼퍼 간격 결정에서 고려해야 할 것으로 사료된다. 또한 접목시기인 토마토 모종의 경우 줄기의 휨이 평균 10도 전후 인 것으로 조사되어 접목불량이 발생할 가능성이 있으므로 이를 개선하기 위한 추가 연구가 필요할 것으로 사료된다. 최적핑거 형상 시험에서는 모서리핑거 형상이 핑거간 거리 조정을 통해 정확한 중앙점을 잡을 수 있는 것으로 조사되었다. 핑거간 거리는 접수와 대목에 대해 각각 2.5mm와 3.0mm로 설정하고 신축성 있는 재질을 이용하여 1mm 두께로 코팅을 하면 대부분의 모종 줄기를 상처없이 파지 할 수 있을 것으로 조사되었다.

This study was conducted to improve the insufficiency of fruit vegetable grafting system developed by National Institute of Agricultural Sciences, Rural Development Administration. When the rotary blade cut the stem of scions and rootstocks, the grafting failure at curved cutting surfaces happened. The cutting depth of a tomato seedling by a rotated cutter was calculated 0.11 mm even when the cutting arm length and the maximum stem diameter were 50 mm and 5 mm, respectively. Mathematical analysis and high-speed photography showed that there was no problem by cutting in straight the stem of scions and rootstocks. The compression test of seedling stems to design the optimal shape of gripper showed that stems were not completely restored when they were compressed above 0.8 mm and 0.6 mm in case of rootstocks and scion, respectively. This study found that the bending angle of stem of tomato seedlings at the grafting period was 10 degree on average. The optimal gripper finger was the edge finger type which could be precisely set center point by adjusting the distance between fingers. In addition, it was found that most of seedling could be grasped without damage when the finger-to-finger distances is set to 2.5 mm for scion and 3.0 mm for rootstocks and finger are coated by 1 mm-thick flexible material.

키워드

참고문헌

  1. Chung, S.H., and D.H. No. 2009. Development of a robot for automation of a callus inoculation. journal of Bio-Environment Control 18(2):87-94(in Korean)
  2. Ha, Y.S., and T.W. Kim. 2014. Development of oriental melon harvesting robot in greenhouse cultivation. Protected Hort. Plant Fac. 22(2):123-130.(in Korean) https://doi.org/10.12791/KSBEC.2013.22.2.123
  3. Kang, C.H., S.K. Lee, K.S. Han, Y.B. Lee, and H.K. Choi. 2008. Development of a soot-semoved splice grafting system for cucurbitaceous vegetables(1) - Analysis of grafting process and system setting-. J. of Biosystems Eng. 33(6).(in Korean)
  4. Kang, C.H., S.K. Lee, K.S. Han, and H.K. Choi. 2005. Development of a root-removed splice grafting robot for cucurbitaceous vegetable - operating performance of grafting system. Proceeding of the KSAM 2005 Summer Conference 10(2):343-346.(in Korean)
  5. Kim, H.M., and S.J. Hwang. 2015. Comparison of pepper grafting efficiency by grafting robot. Protected Hort. Plant Fac. 24(2):57-62(in Korean). https://doi.org/10.12791/KSBEC.2015.24.2.057
  6. Kobayashi, K., and M. Suzuki. 1996. Development of grafting robot for cucurbitaceous vegetables(Part 3) -Continuous grafting by experimental model-. Journal of the Japanese Society of Agricultural Machinery 58(2): 83-93.(in Japanese)
  7. Min, B.R., J.H. Mun, and D.W. Lee. 2003. Development of the manipulator of a cucumber robotic harvester. journal of Bio-Environment Control 12(2):57-62(in Korean)
  8. National Institute of Horticultural and Herbal Science( NIHHS). 2013. Current status of grafted fruit vegetable transplants production and cultivation. Rural Development Administration. (in Korean)
  9. Park, K.S., K.M. Lee, and J.Y. Kim. 1997. Mechanism of a grafting machine using the insertion method, Agric. Res. Bull. Kyungpook Natl. Univ. 15:115-122(in Korean)
  10. Park, K.H., H.T. Park, and H.S. Han. 2011. A Study on the current state and development strategies of raising seedlings industry. Korea Rural Economic Institute. (in Korean)
  11. Suzuki, M., K. Kobayashi, K. Inooku, K. Miura, and K. Hirata. 1995a. Development of grafting robot for cucurbitaceous vegetables(Part 1). Journal of the Japanese Society of Agricultural Machinery 57(2): 100-108.(in Japanese)
  12. Suzuki, M., K. Kobayashi, K. Inooku, and K. Miura. 1995b. Development of grafting robot for cucurbitaceous vegetables( Part 2). Journal of the Japanese Society of Agricultural Machinery 57(3): 103-110.(in Japanese)