DOI QR코드

DOI QR Code

Estimated Dietary Anthocyanin Intakes and Major Food Sources of Koreans

한국인의 안토시아닌 섭취량과 주요 급원식품

  • Ryu, Dayeon (Major of Food & Nutrition, Division of Applied Food System, Seoul Women's University) ;
  • Koh, Eunmi (Major of Food & Nutrition, Division of Applied Food System, Seoul Women's University)
  • 류다연 (서울여자대학교 식품응용시스템학부 식품영양학전공) ;
  • 고은미 (서울여자대학교 식품응용시스템학부 식품영양학전공)
  • Received : 2017.07.11
  • Accepted : 2017.08.02
  • Published : 2017.08.31

Abstract

This study aimed to estimate daily intake of anthocyanins and to identify major sources of anthocyanins in current Korean dietary patterns in order to implement dietary recommendations for the improvement of Korean health. Sixteen foods were selected based on the availability of food intake and reliable anthocyanin content. Food intake data from the Korea National Health and Nutrition Examination Survey 2014 and anthocyanin content data from earlier investigations were used to calculate the consumption of anthocyanins. Anthocyanin contents of 16 foods varied significantly and exhibited a range of 0~4,009 mg/100 g of fresh weight. Daily intake of anthocyanins was estimated to be 3.3 mg to 95.5 mg in Koreans. Of the 16 foods studied, the source contributing most to anthocyanin intake in the Korean population was plums (35.1%), followed by black beans (17.1%) and grapes (15.2%). These results indicate that major foods contributing to anthocyanin consumption in the Korean dietary pattern are fruits and grains.

Keywords

References

  1. Anaga A, Georgiev V, Ochieng J, Phills B, Tsolova V (2013) Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. pp 247-287. In: The Mediterranean Genetic Code-grapevine and Olive. Poljuha D, Sladonja B (eds.). InTech, Rijeka, Croatia.
  2. Bae SH, Suh HJ (2007) Antioxidant activities of five different mulberry cultivars in Korea. LWT 40: 955-962. https://doi.org/10.1016/j.lwt.2006.06.007
  3. Ballistreri G, Continella A, Gentile A, Amenta M, Fabroni S, Rapisarda P (2013) Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chem 140: 630-638. https://doi.org/10.1016/j.foodchem.2012.11.024
  4. Basanta MF, Marin A, De Leo SA, Gerschenson LN, Erlejan AG, Tomas-Barberan FA, Rojas AM (2016) Antioxidant Japanese plum (Prunus salicina) microparticles with potential for food preservation. J Funct Foods 24: 287-296. https://doi.org/10.1016/j.jff.2016.04.015
  5. Bastos C, Barros L, Dueñas M, Calhelha RC, Queiroz MJRP, Santos-Buelga S, Ferreira ICFR (2015) Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem 173: 1045-1053. https://doi.org/10.1016/j.foodchem.2014.10.145
  6. Bitsch R, Netzel M, Frank T, Strass G, Bitsch I (2004) Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. J Biomed Biotechnol 5: 293-298.
  7. Bub A, Watzl B, Heeb D, Rechkemmer G, Briviba K (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur Nutr 40: 113-120. https://doi.org/10.1007/s003940170011
  8. Cabrita L, Fossen T, Andersen OM (2000) Colour and stability of the six common anthocyanin 3-glucosides in aqueous solutions. Food Chem 68: 101-107. https://doi.org/10.1016/S0308-8146(99)00170-3
  9. Cano-Lamadrid M, Lech K, Michalska A, Wasilewska W, Figiel A, Wojdylo A, Carbonell-Barrachina AA (2017) Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chem 232: 306-315. https://doi.org/10.1016/j.foodchem.2017.04.033
  10. Cevallos-Casals BA, Cisneros-Zevallos L (2004) Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem 86: 69-77. https://doi.org/10.1016/j.foodchem.2003.08.011
  11. Chung KW, Joo YH, Lee DJ (2004) Content and color different of anthocyanin by different storage periods in seed coats of black soybean (Glycine max (L.) Merr.). Korean J Agri 16(2): 196-199.
  12. Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ (2002) Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J Agric Food Chem 50(4): 893-898. https://doi.org/10.1021/jf011212y
  13. Doka O, Ficzek G, Bicanic D, Spruijt R, Luterotti S, Toth M, Buijnsters JG, Vegvari G (2011) Direct photothermal techniques for rapid quantification of total anthocyanin content in sour cherry cultivars. Talanta 84: 341-346. https://doi.org/10.1016/j.talanta.2011.01.007
  14. Francis FJ, Markakis PC (1989) Food colorants: Anthocyanins. Criti Rev Food Sci Nutr 28(4): 273-314. https://doi.org/10.1080/10408398909527503
  15. Garcia-Viguera C, Zafrilla P, Romero F, Abellan P, Artes F, Tomas-Barberan FA (1999) Color stability of strawberry jam as affected by cultivar and storage temperature. J Food Sci 64(2): 243-247. https://doi.org/10.1111/j.1365-2621.1999.tb15874.x
  16. Garcia a-Viguera C, Zafrilla P, Tomas-Barberan FA (1997) Determination of authenticity of fruit Jams by HPLC analysis of anthocyanins. J Sci Food Agric 73: 207-213. https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8
  17. Giusti MM, Wrolstad RE (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 14: 217-225. https://doi.org/10.1016/S1369-703X(02)00221-8
  18. Goa mez-Miaguez M, Heredia FJ (2004), Effect of the maceration technique on the relationships between anthocyanin composition and objective color of Syrah wines. J Agric Food Chem 52: 5117-5123. https://doi.org/10.1021/jf049570z
  19. He J, Giusti MM (2010) Anthocyanins: Natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1(3): 163-187. https://doi.org/10.1146/annurev.food.080708.100754
  20. Hong KH, Koh E (2016) Effects of cooking methods on anthocyanins and total phenolics in purple-fleshed sweet potato. J Food Process Preserv 40: 1054-1063. https://doi.org/10.1111/jfpp.12686
  21. Hribar U, Ulrih NP (2014) The metabolism of anthocyanins. Curr Drug Metab 15(1): 3-13. https://doi.org/10.2174/1389200214666131211160308
  22. Huang Z, Wang B, Williams P, Pace RD (2009) Identification of anthocyanins in muscadine grapes with HPLC-ESI-MS. Food Sci Technol 42: 819-824.
  23. Ieri F, Innocenti M, Andrenelli L, Vecchio V, Mulinacci N (2011) Rapid HPLC/DAD/MS method to determine phenolic acids, glycoalkaloids and anthocyanins in pigmented potatoes (Solanum tuberosum L.) and correlations with variety and geographical origin. Food Chem 125: 750-759. https://doi.org/10.1016/j.foodchem.2010.09.009
  24. Im SE, Nam TG, Lee H, Han MW, Heo HJ, Koo SI, Lee CY, Kim DO (2013) Anthocyanins in the ripe fruits of Rubus coreanus Miquel and their protective effect on neuronal PC-12 cells. Food Chem 139: 604-610. https://doi.org/10.1016/j.foodchem.2012.12.057
  25. Joo SY, Choi HY (2012) Antioxidant activity and quality characteristics of black rice bran cookies. J Korean Soc Food Sci Nutr 41(2): 182-191. https://doi.org/10.3746/jkfn.2012.41.2.182
  26. Jun HI, Kim YA, Kim YS (2014) Antioxidant activities of Rubus coreanus Miquel and Morus alba L. fruits. J Korean Soc Food Sci Nutr 43(3): 381-388. https://doi.org/10.3746/jkfn.2014.43.3.381
  27. Kalt W, McDonald JE, Ricker RD, Lu X (1999) Anthocyanin content and profile within and among blueberry species. Can J Plant Sci 79: 617-623. https://doi.org/10.4141/P99-009
  28. Kim HB (2003) Quantification of cyanidin-3-glucoside (C3G) in mulberry fruits and grapes. Korean J Seric Sci 45(1): 1-5.
  29. Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS, Kim JH, Park HJ, Lee DJ (2012) Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130: 966-972. https://doi.org/10.1016/j.foodchem.2011.08.031
  30. Kim JK, Lee SY, Chu SM, Lim SH, Suh SC, Lee YT, Cho HS, Ha SH (2010) Variation and correlation analysis of flavonoids and carotenoids in Korean pigmented rice (Oryza sativa L.) cultivars. J Agric Food Chem 58(24): 12804-12809. https://doi.org/10.1021/jf103277g
  31. Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG, Lee SJ, Chun SC, Chung IM (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem 55: 4802-4809. https://doi.org/10.1021/jf0701943
  32. Kim MK, Kim HA, Koh K, Kim HS, Lee YS, Kim YH (2008) Identification and quantification of anthocyanin pigments in colored rice. Nutr Res Pract 2(1): 46-49. https://doi.org/10.4162/nrp.2008.2.1.46
  33. Kim SK, Kim DS, Kim DY, Chun C (2015) Variation of bioactive compounds content of 14 oriental strawberry cultivars. Food Chem 184: 196-202. https://doi.org/10.1016/j.foodchem.2015.03.060
  34. Kim T, Park D, Son M, Lee D (2015) A study on the midlongterm direction of grain policy: Focusing on Korea's rice trade policy (year 2 of 1). Korea Rural Economic Institute, Naju, Korea. pp 91.
  35. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64(5): 923-933. https://doi.org/10.1016/S0031-9422(03)00438-2
  36. Koponen JM, Happonen AM, Mattila PH, Torronen AR (2007) Content of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem 55: 1612-1619. https://doi.org/10.1021/jf062897a
  37. Korea Health Industry Development Institute (2016) National food & nutrition statistics I: based on 2014 Korea National Health and Nutrition Examination Survey. KHIDI, Osong, Korea. pp 15-70.
  38. Kovacevic DB, Putnik P, Dragovic-Uzelac V, Vahcic, Babojelic MS, Levaj B (2015) Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chem 181: 94-100. https://doi.org/10.1016/j.foodchem.2015.02.063
  39. Lachman J, Hamouz K, Orsak M, Pivec V, Hejtmankova K, Pazderu K, Dvorak P, Cepl J (2012) Impact of selected factors-cultivar, storage, cooking and baking on the content anthocyanins in coloured-flesh potatoes. Food Chem 133: 1107-1116. https://doi.org/10.1016/j.foodchem.2011.07.077
  40. Lee H (2016) Introduction of pigmentation and anthocyanin biosynthesis in harvested strawberry fruit by methyl jasmonate. MS Thesis Seoul National University, Seoul. pp 28-34.
  41. Lee J, Dossett M, Finn CE (2013) Anthocyanin fingerprinting of true bokbunja (Rubus coreanus Miq.) fruit. J Funct Foods 5: 1985-1990. https://doi.org/10.1016/j.jff.2013.06.006
  42. Lee JH (2010) Identification and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties. Food Sci Biotechnol 19(2): 391-397. https://doi.org/10.1007/s10068-010-0055-5
  43. Lee MK, Kim HW, Lee SH, Kim YJ, Jang HH, Jung HA, Hwang YJ, Choe JS, Kim JB (2016) Compositions and contents anthocyanins in blueberry (Vaccinium corymbosum L.) varieties. Korean J Environ Agric 35(3): 184-190. https://doi.org/10.5338/KJEA.2016.35.3.25
  44. Lee SM, You Y, Kim K, Park J, Jeong C, Jhon DY, Jun W (2012) Antioxidant activities of native Gwangyang Rubus coreanus Miq. J Korean Soc Food Sci Nutr 41(3): 327-332. https://doi.org/10.3746/jkfn.2012.41.3.327
  45. Lee Y, Hwang KT (2017) Changes in phytochemical properties of mulberry fruits (Morus alba L.) during ripening. Sci Hort 217: 189-196. https://doi.org/10.1016/j.scienta.2017.01.042
  46. Lee Y, Lee JH, Kim SD, Chang MS, Jo IS, Kim SJ, Hwang KT, Jo HB, Kim JH (2015) Chemical composition, functional constituents, and antioxidant activities of berry fruits produced in Koera. J Korean Soc Food Sci Nutr 44(9): 1295-1303. https://doi.org/10.3746/jkfn.2015.44.9.1295
  47. Lestario LN, Howard LR, Brownmiller C, Stebbins NB, Liyanage R, Lay JO (2017) Changes in polyphenolics during maturation of Java plum (Syzygium cumini Lam.) Food Res Int in press.
  48. Li H, Deng Z, Zhu H, Hu C, Liu R, Young JC, Tsao R (2012) Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Res Int 46: 250-259. https://doi.org/10.1016/j.foodres.2011.12.014
  49. Liu YN, Jeong DH, Jung JH, Kim HS (2013) Quality characteristics and antioxidant activities of cookies added with purple sweet potato powder. Korean J Food Cookery Sci 29(3): 275-281. https://doi.org/10.9724/kfcs.2013.29.3.275
  50. Mena P, Vegara S, Martí N, Carcía-Viguera C, Saura D, Valero M (2013) Changes on indigenous microbiota, colour, bioactive compounds and antioxidant activity of pasteurised pomegranate juice. Food Chem 141: 2122-2129. https://doi.org/10.1016/j.foodchem.2013.04.118
  51. Ministry of Agriculture, Food and Rural Affairs (2015) Utilization rate of imported foods. http://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114_2015_S0003. Accessed June 13, 2017.
  52. Mozetic B, Trebse P, Simcic M, Hribar J (2004) Changes of anthocyanins and hydroxycinnamic acids affecting the skin colour during maturation of sweet cherries (Prunus avinum L.). LWT 37: 123-128. https://doi.org/10.1016/S0023-6438(03)00143-9
  53. Mulinacci N, Ieri F, Giaccherini C, Innocenti M, Andrenelli L, Canova G, Saracchi M, Casiraghi MC (2008) Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. J Agric Food Chem 556: 11830-11837.
  54. Nabavi SF, Habtemariam S, Daglia M, Shafighi N, Barber AJ, Nabavi SM (2015) Anthocyanins as a potential therapy for diabetic retinopathy. Curr Med Chem 22(1): 51-58. https://doi.org/10.2174/0929867321666140815123852
  55. Oszmianski J, Kolniak-Ostek J, Lachowicz S, Gorzelany J, Matlok N (2015) Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.). Ind Crops Prod 77: 658-665. https://doi.org/10.1016/j.indcrop.2015.09.054
  56. Park CH, Yeo HJ, Kim NS, Eun PY, Kim SJ, Arasu MV, Al-Dhabi NA, Park SY, Kim JK, Park SU (2017) Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Appl Biol Chem 60(3): 249-257.
  57. Pellegrini N, Simonetti P, Gardana C, Brenna O, Brighenti F, Pietta P (2000) Polyphenol content and total antioxidant activity of Vini novelli (young red wines) J Agric Food Chem 48: 732-735. https://doi.org/10.1021/jf990251v
  58. Perez-Jimenez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S, Galan P, Scalbert A (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93: 1220-1228. https://doi.org/10.3945/ajcn.110.007096
  59. Piccaglia R, Marotti M, Baldoni G (2002) Factors influencing anthocyanin content in red cabbage (Brassica oleracea var. capitata L frubra (L) Thell). J Sci Food Agric 82: 1504-1509. https://doi.org/10.1002/jsfa.1226
  60. Posmyk MM, Janas KM, Kontek R (2009) Red cabbage anthocyanin extract alleviates copper-induced cytological disturbances in plant meristematic tissue and human lymphocytes. Biometals 22: 479-490. https://doi.org/10.1007/s10534-009-9205-8
  61. Ranilla LG, Genovese MI, Lajolo FM (2007) Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.). J Agric Food Chem 55: 90-98. https://doi.org/10.1021/jf062785j
  62. Rural Development Administration/National Institute Agricultural Sciences (2011) 8th Revision Food Composition Table. Suwon, Korea. pp 28-206.
  63. Ryu SN, Park SZ, Ho CT (1998) High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. J Food Drug Anal 6(4): 729-736.
  64. Sahamishirazi S, Moehring J, Claupein W, Graeff-Hoenninger S (2017) Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content. Food Chem 214: 694-701. https://doi.org/10.1016/j.foodchem.2016.07.070
  65. Sengul H, Surek E, Nilufer-Erdil D (2014) Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Res Int 62: 1069-1079. https://doi.org/10.1016/j.foodres.2014.05.055
  66. Skrede G, Wrolstad RE, Durst RW (2000) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J Food Sci 65(2): 357-364. https://doi.org/10.1111/j.1365-2621.2000.tb16007.x
  67. Song W, Wang HJ, Bucheli P, Zhang PF, Wei DZ, Lu YH (2009) Phytochemical profiles of different mulberry (Morus sp.) species from China. J Agric Food Chem 57: 9133-9140. https://doi.org/10.1021/jf9022228
  68. Sun B, Spranger I, Roque-do-Vale F, Leandro C, Belchior P (2001) Effect of different winemaking technologies on phenolic composition in Tinta Miúda red wines. J Agric Food Chem 49: 5809-5816. https://doi.org/10.1021/jf010661v
  69. Surh J, Koh E (2014) Effects of four different cooking methods on anthocyanins, total phenolics and antioxidant activity of black rice. J Sci Food Agric 94: 3296-3304. https://doi.org/10.1002/jsfa.6690
  70. Suriano S, Alba V, Gennaro DD, Suriano MS, Savino M, Tarricone L (2016) Genotype/rootstocks effect on the expression of anthocyanins and flavans in grapes and wines of Greco Nero n. (Vitis vinifera L.). Sci Hort 209: 309-315. https://doi.org/10.1016/j.scienta.2016.07.004
  71. Takeoka GR, Dao LT, Full GH, Wong RY, Harden LA, Edwards RH, Berrios JDJ (1997) Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J Agric Food Chem 45(9): 3395-3400. https://doi.org/10.1021/jf970264d
  72. Tiwari BK, O'Donnell CP, Patras A, Brunton N, Cullen PJ (2009) Anthocyanins and color degradation in ozonated grape juice. Food Chem Toxicol 47: 2824-2829. https://doi.org/10.1016/j.fct.2009.09.001
  73. Toydemir G, Capanoglu E, Roldan MVG, de Vos RCH, Boyacioglu D, Hall RD, Beekwilder J (2013) Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. Food Res Int 53: 218-225. https://doi.org/10.1016/j.foodres.2013.04.009
  74. Usenik V, Fabcic J, Stampar F (2008) Sugar, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem 107: 185-192. https://doi.org/10.1016/j.foodchem.2007.08.004
  75. Usenik V, Stampar F, Veberic R (2009) Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripenging. Food Chem 2009: 529-534.
  76. Wiczkowski W, Szawara-Nowak D, Topolska J (2013) Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity. Food Res Int 51: 303-309. https://doi.org/10.1016/j.foodres.2012.12.015
  77. Winkel-Shirley B (2001) Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2): 485-493. https://doi.org/10.1104/pp.126.2.485
  78. Wu B, Chang SKC (2008a) Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J Agric Food Chem 56: 8365-8373. https://doi.org/10.1021/jf801196d
  79. Wu B, Chang SKC (2008b) Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybean as affected by thermal processing. J Agric Food Chem 56: 7165-7175. https://doi.org/10.1021/jf8012234
  80. Wu B, Chang SKC (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57: 4754-4764. https://doi.org/10.1021/jf900695s
  81. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Food Chem 54: 4069-4075. https://doi.org/10.1021/jf060300l
  82. Xu J, Su X, Lim S, Griffin J, Carey E, Katz B, Tomich J, Smith JS, Wang W (2015) Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem 186: 90-96. https://doi.org/10.1016/j.foodchem.2014.08.123
  83. Yoshimoto M, Okuno S, Yamaguchi M, Yamakawa O (2001). Antimutagenicity of deacylated anthocyanins in purple-fleshed sweetpotato. Biosci Biotechnol Biochem 65(7): 1652-1655. https://doi.org/10.1271/bbb.65.1652
  84. Zaouay F, Mena P, Garcia-Viguera C, Mars M (2012) Antioxidant activity and physico-chemical properties of Tunisian grown pomegranate (Punica granatum L.) cultivars. Ind Crops Prod 40: 81-89. https://doi.org/10.1016/j.indcrop.2012.02.045
  85. Zhang Y, Hu Z, Chu G, Huang C, Tian S, Zhao Z, Chen G (2014) Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.). J Agric Food Chem 62: 2906-2912. https://doi.org/10.1021/jf404574c
  86. Zhang Y, Hu Z, Zhu M, Zhu Z, Wang Z, Tian S, Chem G (2015) Anthocyanin accumulation and molecular analysis of correlated genes in purple kohlrabi (Brassica oleracea var. gongylodes L.). J Agric Food Chem 63(16): 4160-4169. https://doi.org/10.1021/acs.jafc.5b00473
  87. Zhao CL, Yu YQ, Chen ZJ, Wen GS, Wei FG, Zheng Q, Wang CD, Xiao XL (2017) Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem 214: 119-128. https://doi.org/10.1016/j.foodchem.2016.07.073
  88. Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51: 502-509. https://doi.org/10.1021/jf020728u
  89. Zhu F, Cai YZ, Yang X, Ke J, Korke H (2010) Anthocyanins, hydroxycinnamic acid derivatives, and antioxidant activity in roots of different Chinese purple-fleshed sweetpotato genotypes. J Agric Food Chem 58: 7588-7596. https://doi.org/10.1021/jf101867t

Cited by

  1. 장과류의 방사능 안전성 평가 vol.35, pp.1, 2017, https://doi.org/10.13103/jfhs.2020.35.1.31
  2. Effects of Anthocyanin Supplementation on Reduction of Obesity Criteria: A Systematic Review and Meta-Analysis of Randomized Controlled Trials vol.13, pp.6, 2017, https://doi.org/10.3390/nu13062121