References
- Abd-Alla, A.M., Khan, A. and Abo-Dahab, S.M. (2015), "Rotational effect on Rayleigh, Love and Stoneley waves in fibre-reinforced anisotropic general viscoelastic media of higher and fraction orders with voids", J. Mech. Sci. Technol., 29(10), 4289-4297. https://doi.org/10.1007/s12206-015-0926-z
- Abo-Dahab, S.M. (2015), "Propagation of Stoneley waves in magneto-thermoelastic materials with voids and two relaxation times", J. Vibr. Contr., 21(6), 1144-1153. https://doi.org/10.1177/1077546313493651
- Abo-Dahab, S.M., Abd-Alla, A.M. and Khan, A.(2016), "Rotational effect on Rayleigh, Love and Stoneleywaves in a non-homogeneous fibre-reinforced anisotropic general visco-elastic media of higher order", Struct. Eng. Mech., 58(1), 181-197. https://doi.org/10.12989/sem.2016.58.1.181
- Ahmed, S.M. and Abo-Dahab, S.M. (2012), "Influence of initial stress and gravity field on propagation of Rayleigh and Stoneley waves in a thermoelastic orthotropic granular medium", Math. Prob. Eng., 22.
- Boley, B.A. and Tolins, I.S. (1962), "Transient coupled thermoelastic boundary value problem in the half space", J. Appl. Mech., 29, 637-646. https://doi.org/10.1115/1.3640647
- Chadwick, P. and Windle, D.W. (1964), "Propagation of Rayleigh waves along isothermal and insulated boundaries", Proceeding of the Royal Society of London, 280, 47-71.
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51, 705-729. https://doi.org/10.1115/1.3098984
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on simple heat conduction", J. Appl. Math. Phys. (ZAMP), 19, 969-970. https://doi.org/10.1007/BF01602278
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", J. Appl. Math. Phys. (ZAMP), 20, 107-112. https://doi.org/10.1007/BF01591120
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two parameters", Zeitschrift Für Angewandte Mathematik Und Physik (ZAMP), 19, 614-627. https://doi.org/10.1007/BF01594969
- Das, P. and Kanoria, M. (2014), "Study of finite thermal waves in a magnetothermoelastic rotating medium", J. Therm. Stress., 37(4), 405-428. https://doi.org/10.1080/01495739.2013.870847
- Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermoelasticity, Hindustance Publisher Corp., New Delhi, India.
- El-Karamany, A. and Ezzat, M.A. (2014), "On the dual-phase-lag thermoelasticity theory", Meccan., 49(1), 79-89. https://doi.org/10.1007/s11012-013-9774-z
- El-Karamany, A. and Ezzat, M.A. (2016), "On the phase- lag Green-Naghdi thermoelasticity theories", Appl. Math. Model., 40(9-10), 5643-5659. https://doi.org/10.1016/j.apm.2016.01.010
- El-Karamany, A. and Ezzat, M.A. (2015), "Two-temperature Green-Naghdi theory of type III in linear thermoviscoelastic anisotropic solid", Appl. Math. Model., 39(8), 2155-2171. https://doi.org/10.1016/j.apm.2014.10.031
- Ezzat, M.A. and Awad, E.S. (2010), "Constitutive relations, uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures", J. Therm. Stress., 33(3), 225-250.
- Ezzat, M.A. and EI-Bary, A.A. (2016), "Modelling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31, 189-208. https://doi.org/10.1007/BF00044969
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "A re-examination of the basic postulates of thermomechanics", Proceeding of the Royal Society of London.
- Kakkar, R. and Kakkar, S. (2016), "SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic half-space", Smart Struct. Syst., 17(2), 327-345. https://doi.org/10.12989/sss.2016.17.2.327
- Kaushal. S., Kumar, R. and Miglani, A. (2011), "Wave propagation in temperature rate dependent thermoelasticity with two temperatures", Math. Sci., 5, 125-146.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in a transversely isotropic magnetothermoelastic with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 2060-2075.
- Kumar, R. and Gupta, V. (2015), "Rayleigh waves in generalized thermoelastic medium with mass diffusion", Can. J. Phys., 93, 1-11.
- Kumar, R. and Kansal, T. (2010), "Effect of rotation on Rayleigh Lamb waves in an isotropic generalized thermoelastic diffusive plate", J. Appl. Mech. Tech. Phys., 51(5), 751-761. https://doi.org/10.1007/s10808-010-0095-x
- Lockett, F.J. (1958), "Effect of thermal properties of a solid on the velocity of Rayleigh waves", J. Mech. Phys. Sol., 7, 71-75. https://doi.org/10.1016/0022-5096(58)90040-1
- Mahmoud, S.R. (2013), "An analytical solution for effect of magnetic field and initial stress on an infinite generalized thermoelastic rotating non homogeneous diffusion medium", Abstr. Appl. Analy., 11.
- Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista De La Academia Canaria De Ciencias, 8(1), 101-106.
- Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies, Nonlinear Analysis: R.W.A.", 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014
- Quintanilla, R. (2002), "Thermoelasticity without energy dissipation of materials with microstructure", J. Appl. Math. Model., 26, 1125-1137. https://doi.org/10.1016/S0307-904X(02)00078-1
- Rayleigh, L. (1885), "On waves propagated along the plane surface of an elastic solid", Proc. London Math Soc., 4-11.
- Sharma, K. and Kumar, P. (2013), "Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids", J. Therm. Stress., 36, 94-111. https://doi.org/10.1080/01495739.2012.720545
- Sharma, K. and Marin, M. (2013), "Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", U.P.B. Sci. Bull Ser., 75(2), 121-132.
- Sharma, K. and Bhargava, R.R. (2014), "Propagation of thermoelastic plane waves at an imperfect boundary of thermal conducting viscous liquid/generalized thermolastic solid", Afrika Mathematika, 25, 81-102. https://doi.org/10.1007/s13370-012-0099-1
- Sharma, S., Sharma, K. and Bhargava, R.R. (2013), "Effect of viscousity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory Type-II and Type-III", Mater. Phys. Mech., 16,144-158.
- Slaughter, W.S. (2002), The Linearised Theory of eElasticity, Birkhausar.
- Youssef, H.M. (2006), "Theory of two temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101
- Youssef, H.M. (2011), "Theory of two-temperature thermoelasticity without energy dissipation", J. Therm. Stress., 34, 138-146. https://doi.org/10.1080/01495739.2010.511941
- Youssef, H.M. (2013), "Variational principle of two-temperature thermoelasticity without energy dissipation", J. Thermoelast., 1(1), 42-44.
- Youssef, H.M. and AI-Lehaibi, E.A. (2007), "State space approach of two temperature generalized thermoelasticity of one dimensional problem", J. Sol. Struct., 44, 1550-1562. https://doi.org/10.1016/j.ijsolstr.2006.06.035
- Youssef, H.M. and AI-Harby, A.H. (2007), "State space approach of two temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal loading", J. Arch. Appl. Mech., 77(9), 675-687. https://doi.org/10.1007/s00419-007-0120-6
- Zakaria, M. (2014), "Effect of Hall current on generalized Magneto-thermoelasticity Micropolar solid subjected to ramp-type heating", Appl. Mech., 50(1), 92-104.
Cited by
- Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory vol.8, pp.6, 2017, https://doi.org/10.12989/csm.2019.8.6.501
- Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields vol.10, pp.1, 2021, https://doi.org/10.12989/csm.2021.10.1.039