DOI QR코드

DOI QR Code

Identifying Risk Management Locations for Synthetic Natural Gas Plant Using Pipe Stress Analysis and Finite Element Analysis

배관응력해석 및 유한요소해석에 의한 SNG플랜트의 리스크 관리 위치 선정

  • Erten, Deniz Taygun (Department of Mechanical Engineering, Graduate School, Chung Ang University) ;
  • Yu, Jong Min (Department of Mechanical Engineering, Graduate School, Chung Ang University) ;
  • Yoon, Kee Bong (Department of Mechanical Engineering, Chung Ang University) ;
  • Kim, Ji Yoon (ETCC(Energy Technology Convergence Center Inc.))
  • Received : 2017.05.26
  • Accepted : 2017.06.22
  • Published : 2017.06.30

Abstract

While they are becoming more viable, synthetic natural gas (SNG) plants, with their high temperatures and pressures, are still heavily dependent on advancements in the state-of-the-art technologies. However, most of the current work in the literature is focused on optimizing chemical processes and process variables, with little work being done on relevant mechanical damage and maintenance engineering. In this study, a combination of pipe system stress analysis and detailed local stress analysis was implemented to prioritize the inspection locations for main pipes of SNG plant in accordance to ASME B31.3. A pipe system stress analysis was conducted for pre-selecting critical locations by considering design condition and actual operating conditions such as heat-up and cool-down. Identified critical locations were further analyzed using a finite element method to locate specific high-stress points. Resultant stress values met ASME B31.3 code standards for the gasification reactor and lower transition piece (bend Y in Fig.1); however, it is recommended that the vertical displacement of bend Y be restricted more. The results presented here provide valuable information for future risk based maintenance inspection and further safe operation considerations.

최근 합성천연가스(synthetic natural gas, SNG)의 사용과 합성천연가스를 생산하는 플랜트의 실증 운영이 증가하고 있다. SNG 플랜트는 다양하게 개발된 여러 합성 공정 기술이 적용되고 있으며, 이러한 공정의 특성상 고온, 고압의 운전 조건을 가진다. 기존 여러 연구들은 주로 합성천연가스 생산을 위한 화학적 합성 공정의 변수와 공정 최적화에 대한 연구에 집중되어 왔다. 이에 비해, 기존 산업 플랜트와는 다소 차별되는, 공정 특성으로 인한 SNG 플랜트의 기계적 손상과 유지보수 기법에 대한 연구는 많지 않다. 본 연구에서는 SNG플랜트의 주요 배관계통에 대해 ASME B31.3에 의거한 배관 시스템 응력 해석을 수행하였다. 또한 특이 부위에 대해 상세 국부 응력 해석을 수행하였다. 해석 결과로부터 배관 주요부위 중 파손 리스크가 높은 취약부의 위치를 선정하였다. 이 위치들은 배관 위험도 관리 대상으로 활용할 수 있다. 배관 시스템 응력 해석은 설계 운전조건과 실제 운전조건을 고려하여 수행되었다. 배관 시스템 응력 해석을 통해 도출된 주요 부위에 대해서는 국부적 상세 응력 해석을 위해 유한 요소 해석이 수행되었다. 발생되는 상세 응력 값은 가스화 반응기 및 하부 곡관부 대한 ASME B31.3 코드 표준을 만족하였다. 하부 곡관부의 경우 수직 변위를 제한하는 것이 구조적으로 안전 향상에 좋을 것으로 파악되었다. 수행된 해석결과는 향후 위험도 기반 유지 보수 검사 및 안전 운영에 대해 기반 정보로 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. ANSYS(R) Academic Research, Release 16.0, 2015
  2. ASME Boiler and Pressure Vessel Code II Part D: Properties. ASME, NY, USA; 2010.
  3. ASME Boiler and Pressure Vessel Code, Section VIII, Division 2, Part 5, ASME, 2001.
  4. AutoPIPE Version 8i SELECTseries3 release 9.4. User's manual. Bentley 2011
  5. Chang, M.K. et al., 2005. Application of risk based inspection in refinery and processing piping. Journal of Loss Prevention in the Process Industries, 18(4-6), pp.397-402 https://doi.org/10.1016/j.jlp.2005.06.036
  6. Ding, Y. et al., 2013. Coal-based synthetic natural gas (SNG): A solution to China's energy security and CO2 reduction? Energy Policy, 55, pp.445-453 https://doi.org/10.1016/j.enpol.2012.12.030
  7. Dou, Z. et al., 2017. Applications of RBI on leakage risk assessment of direct coal liquefaction process. Journal of Loss Prevention in the Process Industries, 45, pp.194-202 https://doi.org/10.1016/j.jlp.2016.12.006
  8. He, C., Feng, X. & Chu, K.H., 2013. Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant. Applied Energy, 111, pp.742-757 https://doi.org/10.1016/j.apenergy.2013.05.045
  9. Hirano, T., 2006. Gas explosions caused by gasification of condensed phase combustibles. Journal of Loss Prevention in the Process Industries, 19 (2-3), pp.245-249 https://doi.org/10.1016/j.jlp.2005.05.019
  10. Huo, J. et al., 2013. Feasibility analysis and policy recommendations for the development of the coal based SNG industry in Xinjiang. Energy Policy, 61, pp.3-11 https://doi.org/10.1016/j.enpol.2013.06.118
  11. Keiser, J.R., Dias, O.C. & Mayotte, J.R.D.A.-S., 1994. Analysis of Pipe Failure at the Great- Plains Coal-Gasification Plant. Materials Characterization, 33, p.147-153 https://doi.org/10.1016/1044-5803(94)90077-9
  12. Koytsoumpa, E.I. et al., 2015. Modelling and assessment of acid gas removal processes in coalderived SNG production. Applied Thermal Engineering, 74, pp.128-135 https://doi.org/10.1016/j.applthermaleng.2014.02.026
  13. Li, H. et al., 2014. Analysis of rationality of coal-based synthetic natural gas (SNG) production in China. Energy Policy, 71, pp.180-188 https://doi.org/10.1016/j.enpol.2014.04.018
  14. Li, S. et al., 2014. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis. Applied Energy, 136, pp.98-109 https://doi.org/10.1016/j.apenergy.2014.09.006
  15. Swain, P.K., Das, L.M. & Naik, S.N., 2011. Biomass to liquid: A prospective challenge to research and development in 21st century. Renewable and Sustainable Energy Reviews, 15(9), pp.4917-4933 https://doi.org/10.1016/j.rser.2011.07.061
  16. Yang, C.J. & Jackson, R.B., 2012. China's growing methanol economy and its implications for energy and the environment. Energy Policy, 41, pp.878-884 https://doi.org/10.1016/j.enpol.2011.11.037
  17. Yoon, K.B., Yu, J.M. & Nguyen, T.S., 2015. Stress relaxation cracking in 304H stainless steel weld of a chemical reactor serviced at $560^{\circ}C$. Engineering Failure Analysis, 56, pp.288-299 https://doi.org/10.1016/j.engfailanal.2015.01.014
  18. Yoon, K.B. et al., 2016. Creep cracking and damage assessment in P91 and P92 piping system. EPRI 2nd Asia-Pacific Workshop: Service experience of creep strength enhanced ferritic steels, Eastern & Oriental Hotel, Penang Malaysia March 9-11