DOI QR코드

DOI QR Code

A Study on the Sound Insulation Characteristics of Honeycomb Panels for Offshore Plants

해양플랜트용 허니컴 패널의 차음 특성 연구

  • Jung, Jae-Deok (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College)
  • 정재덕 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학전공) ;
  • 권현웅 (거제대학교 조선해양공학과)
  • Received : 2017.11.27
  • Accepted : 2017.12.28
  • Published : 2017.12.31

Abstract

Currently, porous materials (e.g., mineral wool) are the core materials used in offshore plant panels, but in spite of their superb acoustic performance, these items must be replaced for environmental reasons. A honeycomb structure is widely used throughout the industry because of its high strength-to-weight ratio. However, research in terms of noise and vibration is minimal. An acoustic study should be conducted by taking advantage of honeycomb structures to replace porous materials. In this study, a simulation was performed assuming that a honeycomb panel is a superposition of symmetric mode and antisymmetric mode. Reliability was verified by comparing a simulation results based on a theory with a experimental results, and the possibility of the panel as a core material was evaluated by studying the sound insulation characteristics of a honeycomb. As the panel thickness increased, the coincidence frequency shifted to low frequency. As the angle between horizontal line and oblique wall and cell-size decreases, the sound insulation performance is improved. And as the cell-wall thickness increased, the sound insulation performance improved.

현재 해양플랜트용 패널의 주요한 중심재는 다공성재료(미네랄울) 이지만, 뛰어난 차음성능에도 불구하고 환경적인 이유로 이를 대체할 재료가 요구되고 있다. 허니컴 구조는 무게 대비 강도가 우수하여 산업전반에서 많이 쓰이고 있다. 하지만 소음진동 측면에서의 연구는 미미하다. 다공성재료를 대체하기 위한 연구로서 허니컴의 음향학적 연구가 필요하다. 본 논문에서는 허니컴패널을 대칭모드와 비대칭모드의 중첩으로 가정하여 수치해석을 진행하였다. 이러한 이론을 통한 수치해석과 실험결과를 비교하여 수치해석의 신뢰성을 검증하였다. 그리고 수치해석을 통해 허니컴패널의 차음특성을 연구하고 중심재로서의 가능성을 평가하였다. 패널두께를 키울수록 일치주파수가 저주파수로 이동하였다. 셀사이즈와 셀벽의 사이각이 감소함에 따라 차음성능이 개선되었고, 셀벽두께의 경우 증가할수록 차음성능이 향상되었다.

Keywords

References

  1. Bang, S. O., K. S. Kim, S. H. Kim, S. G. Song and J. U. Cho(2011), Study on Compression Tests of Aluminum Foam and Honeycomb Sandwich Composites, Journal of the Korea Academia-Industrial cooperation society, 12(9), pp. 3802-3807. https://doi.org/10.5762/KAIS.2011.12.9.3802
  2. Dym C. L. and M. A. Lang(1974), Transmission of sound through sandwich panels, Journal of the Aoustical Society of America, 56, pp. 1523-32. https://doi.org/10.1121/1.1903474
  3. Fahy, F. and P. Gardonio(2007), Sound and Structural Vibration, Academic Pr.
  4. Gibson L. J. and M. F. Ashby(1997), Cellular Solids: Structure and Properties, Second edition, Cambridge University Press, Chapter 4.
  5. ISO 717-1:2013, Acoustics e Rating of Sound Insulation in Buildings and of Building Elements e Part 1: Airborne Sound Insulation.
  6. ISO 10140-2:2010, Acoustics - Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation, 2010.
  7. Kim, H. G. and N. S. Choi(2004), Prediction of Mechanical Properties of Honeycomb Core Materials and Analysis of Interlaminar Stress of Honeycomb Sandwich Composite Plate, composites research, 17(1), pp. 29-37.
  8. Kim, S. S. and J. U. Cho(2013), Analysis on the impact property of aluminum honeycomb core sandwich, Journal of Korean Society of Mechanical Technology, 15(1), pp. 61-66. https://doi.org/10.17958/ksmt.15.1.201302.61
  9. Kinsler, L. E., A. R. Frey, A. B. Coppens and J. V. Sanders(1999), Fundamentals of acoustics, Fundamentals of Acoustics, 4th Edition, Wiley, APPENDIXES A10.
  10. Lin, H. J., C. N. Wang and Y. M. Kuo(2007), Sound transmission loss across specially orthotropic laminates, Applied Acoustics, 68(10), pp. 1177-1191. https://doi.org/10.1016/j.apacoust.2006.06.007
  11. Lord, R. D., P. Ford and A. W. Walker(1966), Sound Transmission Through Sandwich Constructions, Journal of Sound and Vibration, 5, pp. 9-21.
  12. Moore, J. A. and R. H. Lyon(1991), Sound transmission loss characteristics of sandwich panel constructions, Acoustical Society of America, 89 (May).
  13. NORSOK Standard C-002(2006), Architectural components and equipment, ch. 9.1 Insulation.
  14. NORSOK Standard R-004(2005), Piping and equipment insulation, ch. 7.6 Guidelines for acoustic insulation.
  15. Paik, J. K., A. K. Thayamballi and G. S. Kim(1999), The strength characteristics of aluminum honeycomb sandwich panels, Thin-Walled Structures, 35(3), pp. 205-231. https://doi.org/10.1016/S0263-8231(99)00026-9
  16. Yu, Y. H.(2007), A Study on the Evaluation of the Boarding Environment for the ship Vibration (on the Basis of ISO-6954 : 2000(E)), Journal of the Korean Society of Marine Environment & Safety, 13(4), pp. 107-112.