DOI QR코드

DOI QR Code

Uncertainty analysis for Section-by-Section method of ADCP discharge measurement based on GUM standard

GUM 표준안 기반 ADCP 지점 측정 방법 유량 측정 불확도 분석

  • Kim, Dongsu (Department of Civil and Environmental Engineering, Dankook University) ;
  • Kim, Jongmin (River Experiment Center, KICT) ;
  • Byeon, Hyunhyuk (Department of Civil and Environmental Engineering, Myongji University) ;
  • Kang, Junkoo (River Experiment Center, KICT)
  • 김동수 (단국대학교 토목환경공학과) ;
  • 김종민 (한국건설기술연구원 하천실험센터) ;
  • 변현혁 (명지대학교 토목환경공학과) ;
  • 강준구 (한국건설기술연구원 하천실험센터)
  • Received : 2017.01.23
  • Accepted : 2017.06.21
  • Published : 2017.08.31

Abstract

Acoustic Doppler Current Profilers (ADCPs) have been widely utilized for assessing streamflow discharge, yet few comprehensive studies were conducted to evaluate discharge uncertainty in consideration of individual uncertainty components. It could be mostly because it was not easy to determine which uncertainty framework can be appropriate to rigorously analyze streamflow discharge driven by ADCPs. In this regard, considerable efforts have been made by scientific and engineering societies to develop a standardized theoretical framework for uncertainty analysis in hydrometry. One of the well-established UA methodology based on sound statistical and engineering concepts is Guide to the Expression of Uncertainty Measurement (GUM) adopted widely by various scientific and research communities. This research fundamentally adapted the GUM framework to assess individual uncertainty components of ADCP discharge measurements, and subsequently provided results of a customized experiment in a controllable real-scale artificial river channel. We focused particularly upon sensitivities of uncertainty components in the GUM framework driven by ADCPs direct measurements such as depths, edge distance, submerged depth, velocity gap, sampling time, repeatability, bed roughness and so on. Section-by-Section method for ADCP discharge measurement was applied for uncertainty analysis for this study. All of measurements were carefully compared with data using other instrumentations such as ADV to evaluate individual uncertainty components.

음향 도플러 유속계(Acoustic Doppler Current Profiler, ADCPs)는 하천의 유량측정에 널리 사용되고 있으나, 유량 측정성과의 불확도를 평가하는 방법에 대하여 진행된 연구는 부족한 현실이며, 이는 실제 하천에서 유속 및 유량 등의 수리량을 조절하는 것이 현실적으로 불가능하여 ADCP의 불확도 요인별 실험 및 분석이 어렵기 때문이다. 유량 및 수리량의 측정 불확도를 평가하기 위하여 과학 및 공학 분야에서는 다양한 연구들이 진행되어 왔으며, 그 중 국제적으로 공인받고 있는 방법 중 하나가 GUM (Guide to the Expression of Uncertainty Measurement)이다. 본 연구에서는 GUM 표준안을 기반으로 ADCP의 유량 측정 불확도를 평가하기 위한 연구를 수행하였다. ADCP의 유량 측정 불확도 요인별 분석을 수행하기 위하여 유량 공급의 조절이 가능한 실 규모 수로를 보유하고 있는 하천실험센터에서 실험을 진행하였으며, ADCP의 측정 정확도에 영향을 미치는 수심, 측정 지점에서 하안까지의 거리, ADCP의 잠김 깊이, 유속 오차, 측정 시간, 반복 횟수, 하상 조건 등에 대한 측정 정확도 평가 실험을 수행하였다. ADCP로 유량을 측정하는 방법은 지점측정방식을 기반으로 유속-면적법을 통해 산정하는 방법과 일반적으로 사용되는 이동측정방식이 있으며, 본 연구에서는 ADCP의 지점측정방식을 통해 유량을 산정하는 Section-by-Section 방법으로 산정된 유량의 불확도를 평가하였다. 모든 측정 결과는 요인별 불확도 평가를 수행하기 위하여 유속은 ADV, 수심은 광파기로 측정된 결과와 비교하였다.

Keywords

References

  1. Carr, M. L., and Rehmann, C. R. (2005). "Estimating the dispersion coefficient with an acoustic Doppler current profiler." Proceeding, World Water and Environmental Resources Congress 2005 (CD-ROM), ASCE, Reston, VA.
  2. Dinehart, R. L., and Burau, J. R. (2005). "Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends." Water Resources Research, Vol. 41, W09405, doi: 10.1029/2005WR004050.
  3. Gaeuman, D., and Jacobson, R. B. (2005). Aquatic habitat mapping with an acoustic current profiler: considerations for data quality. Open-file Report 2005-1163, U.S. Geological Survey, Reston, VA.
  4. Gonzalez-Castro, J., and Muste, M. (2007). "Framework for estimating uncertainty of ADCP measurements from a moving boat by standardized uncertainty analysis." Journal of Hydraulic Engineering, Vol. 133, No. 12, pp. 1390-1410. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1390)
  5. GUM (1993). Guide to the expression of uncertainty in measurement. ISBN 92-67-10188-9. BIPM. IEC. IFCC. ISO. IUPAC. IUPAP. OIML. International Organization for Standardization, Geneva, Switzerland.
  6. Howarth, M. J. (2002). "Estimates of Reynolds and bottom stress from fast sample ADCPs deployed in continental shelf seas." Proceeding, Hydraulic Measurements and Experimental Methods 2002 (CD-ROM), ASCE, Reston, VA.
  7. ISO 1088 (2007). Hydrometry-velocity-area methods using currentmeters- collection and processing of data for determination of uncertainties in flow measurement. International Organization for Standardization, ISO 1088, Geneva, Switzerland.
  8. ISO 748 (2007). Hydrometry-measurement of liquid flow in open channels using current-meters and floats. International Organization for Standardization. ISO 748, Geneva, Switzerland.
  9. Jun, J. W., Han, J. S., and Yoon, S. E. (2000). "An analysis of the flow and bed topography characteristics of curved channels with numerical model." Journal of Korea Water Resources Association, Vol. 33, No. 1, pp.183-191.
  10. Kim, D. S., and Kang, B. S. (2011). "Validation of assessment for mean flow field using spatial averaging of instantaneous ADCP velocity measurements." Journal of Environmental Science International, Vol. 20, No. 1, pp. 107-118. https://doi.org/10.5322/JES.2011.20.1.107
  11. Kim, D. S., Muste, M., and Weber, L. (2007). "Software for assessment of longitudinal dispersion coefficient using acoustic-Doppler current profiler measurements." XXXII International Association of Hydraulic Engineering and Research Congress, Venice, Italy.
  12. Kim, E. S., and Choi, H. I. (2009). "Verification and application of velocity measurement using price meter and ADCP." Korean Society of Hazard Mitigation, Vol. 9, No. 3, pp. 101-106.
  13. Kim, J. M., Kim, D. S., Son, G. S., and Kim, S. J. (2015a). "Accuracy analysis of velocity and water depth measurement in the straight channel using ADCP." Journal of Korea Water Resources Association, Vol. 48, No. 5, pp. 365-375.
  14. Kim, J. M., Kim, S. J., Son, G. S., and Kim, D. S. (2015b). "Accuracy analysis of ADCP stationary discharge measurement for unmeasured regions." Journal of Korea Water Resources Association, Vol. 48, No. 7, pp. 553-566. https://doi.org/10.3741/JKWRA.2015.48.7.553
  15. Kim, Y. S., Won, N. I., Noh, J. W., and Park, W. C. (2015c). "Development of high-performance microwave water surface current meter for general use to extend the applicable velocity range of microwave water surface current meter on river discharge measurements." Journal of Korea Water Resources Association, Vol. 48, No. 8, pp. 671-678.
  16. KOLAS-G-005 (2012). Guidance to the assessment of measurement uncertainty. Korean Agency for Technology and Standards, KOLAS-G-005, Korea
  17. Kostaschuk, R., Villard, P., and Best, J. (2004). "Measuring velocity and shear stress over dunes with acoustic doppler profiler." Journal of Hydraulic Engineering, Vol. 130, No. 9, pp. 932-936. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(932)
  18. Lee, K. T., Ho, H. C., Muste, M., and Wu, C. H. (2014). "Uncertainty in open channel discharge measurements acquired with streampro ADCP." Journal of Hydrology, Vol. 509, pp. 101-114. https://doi.org/10.1016/j.jhydrol.2013.11.031
  19. Lee, S. H., Kim, W. G., and Kim, Y. S. (1997). "Practical aspects of microwave surface velocity meter applied to measurements of stream discharges." Journal of Korea Water Resources Association, Vol. 30, pp. 671-678.
  20. Lee, S. H., Lee, H. G., and Kim, W. G. (1995). "Velocity measurement of stream water surface using microwave." Journal of Korea Water Resources Association, Vol. 28, pp.183-191.
  21. Lu, Y., and Lueck, R. G. (1999). "Using broadband ADCP in a tidal channel. Part II: turbulence." Journal of Atmospheric and Oceanic Technology, Vol. 16, pp. 1568-1579. https://doi.org/10.1175/1520-0426(1999)016<1568:UABAIA>2.0.CO;2
  22. Morlock, S. E. (1996). Evaluation of acoustic Doppler current profiler measurements of river discharge. US Geological Survey Water Resources Investigations, Report 95-4218.
  23. Mueller, D., Abad, J., Garcia, C., Gartner, J., García, M., and Oberg, K. (2007). "Errors in acoustic Doppler profiler velocity measurements caused by flow disturbance." Journal of Hydraulic Engineering, Vol. 133, pp.1411-1420. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1411)
  24. Muste, M., Kim, D. S., and Gonzalez-Castro, J. A. (2010). "Near-transducer errors in ADCP measurements: experimental findings." Journal of Hydraulic Engineering, Vol. 136, No. 5, pp. 275-289. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000173
  25. Muste, M., Vermeyen, T., Hotchkiss, R., and Oberg, K. (2007). "Acoustic velocimetry for riverine environments." Journal of Hydraulic Engineering, Vol. 115, No. 12, pp. 1297-1298.
  26. Muste, M., Yu, K., and Spaspjevic, M. (2004). "Practical aspects ADCP data use for quantification of mean river flow characteristics; Part I: moving-vessel measurement." Flow Measurement and Instrumentation, Vol. 15, No. 1, pp. 1-6. https://doi.org/10.1016/j.flowmeasinst.2003.09.001
  27. Nystrom, E. A., Oberg, K. A., and Rehmann, C. R. (2002). "Measurement of turbulence with acoustic Doppler current profilers sources of error and laboratory results." Proceeding, Hydraulic Measurements & Experimental Methods 2002 (CD-ROM), ASCE, Reston, VA.
  28. RDI (1996). Acoustic Doppler current profilers - principle of operation, a practical primer. RD Instruments, San Diego, CA.
  29. RDI (2014). SxS PRO software users guide. RD Instruments, San Diego, CA.
  30. Rennie, C. D., Millar, R. G., and Church, M. A. (2002). "Measurement of bedload velocity using an acoustic Doppler current profiler." Journal of Hydraulic Engineering, Vol. 128, No. 5, pp. 473-483. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(473)
  31. Schemper, T. J., and Admiraal, D. M. (2002). "An examination of the application of acoustic Doppler current profiler measurements in a wide channel of uniform depth for turbulence calculations." Proceeding, Hydraulic Measurements & Experimental Methods 2002 (CD-ROM), ASCE, Reston, VA.
  32. Shields, F. D., Knight, S. S., and Church, M. A. (2003). "Use of acoustic Doppler current profilers to describe velocity distributions at the reach scale." Journal of the Atmosphere and Water Resources Association, Vol. 39, No. 6, pp. 1397-1408. https://doi.org/10.1111/j.1752-1688.2003.tb04426.x
  33. Simpson, M. R. (2001). Discharge measurements using a broadband acoustic Doppler current profiler. US Geological Survey Open-File Report 01-1.
  34. Son, G. S., You, H. J., and Kim, D. S (2014). "Feasibility calculation of FaSTMECH for 2D velocity distribution simulation in meandering channel." Journal of KSCE, Vol. 34, No. 6, pp. 1753-1764. https://doi.org/10.12652/Ksce.2014.34.6.1753
  35. SonTek (2000). Doppler velocity log for ROV/AUV applications. SonTek Newsletter, 6(1), SonTek, San Diego, CA.
  36. SonTek (2009). FlowTracker handheld ADV technical manual. SonTek, San Diego, CA
  37. SonTek (2009). RiverSurveyor S5/M9 system manual firmware version 1.0. SonTek, San Diego, CA
  38. SonTek (2011). SonTek RiverSurveyor and CastAway-CTD integration. SonTek Technical Note, SonTek, San Diego, CA.
  39. SonTek (2016). A Primer on SonTek ADV systems. SonTek Technical Notes, SonTek, San Diego, CA.
  40. Stacey, M. T., Monismith, S. G., and Burau, J. R. (1999). "Observations of turbulence in partially stratified estuary." Journal of Physical Oceanography, Vol. 29, pp. 1950-1970. https://doi.org/10.1175/1520-0485(1999)029<1950:OOTIAP>2.0.CO;2
  41. Stasulis, N. (2011). Best practices for collecting mid-section discharge measurements with ADCPs, marine water science center. USGS Hydroacoustics webinar presented in September 19 and 22, 2011.