DOI QR코드

DOI QR Code

Development of Emotion Inference Application with Location Information and User's Heartbeat Rate

심박 정보 기반 위치 정보 융합형 감정 추론 어플리케이션 개발

  • Cha, Kyung-Ae (School of Computer and Communication Eng., Daegu University) ;
  • Choi, Hyun-Su (Graduate School of Information and Communication Eng., Daegu University) ;
  • Hong, Won-Kee (School of Computer and Communication Eng., Daegu University) ;
  • Park, Se Hyun (School of Computer and Communication Eng., Daegu University)
  • 차경애 (대구대학교 정보통신공학부) ;
  • 최현수 (대구대학교 대학원 정보통신학과) ;
  • 홍원기 (대구대학교 정보통신공학부) ;
  • 박세현 (대구대학교 정보통신공학부)
  • Received : 2017.06.17
  • Accepted : 2017.08.20
  • Published : 2017.08.28

Abstract

The personal activity information is expanding as a way to utilize wearable devices that are emerging as next generation smart devices. This paper develops an application for collecting heartbeat rate and location information of a user using SmartWatch, which is a smartphone and wearable device, and analyzing it through machine learning to infer user's emotion information. By using smart phone and smart watch, developed application can collect biometric data and location information by simply executing application and doing everyday life. In addition, adding the location information to the hearbit rate data, it proves higher utilization than existing ones.

최근 웨어러블 디바이스를 통한 다양한 개인 정보를 수집하고 이를 활용하는 분야가 활성화되고 있다. 본 논문에서는 스마트폰과 함께 일상 생활에서 착용하여 사용이 용이한 웨어러블 디바이스인 스마트워치를 통하여 심박 정보를 수집하고, 이를 위치 정보와 결합한 분석을 토대로 해당 위치에서의 감정 맞춤형 장소 추천이 가능한 어플리케이션을 개발한다. 이는 감정 추론 결과에 위치 정보를 추가함으로써 개인화서비스 제공 분야의 활용도를 높일 수 있으며, 부가적인 장치가 필요 없이 단지 스마트폰의 어플리케이션과 스마트워치의 사용으로 정보 수집과 분석이 이루어지므로 다양한 맞춤형 서비스 제공에 용이하게 활용될 수 있다.

Keywords

References

  1. S. S. Kim, J. Park, W. Woo, "Quantified Lockscreen : Intergration of Personalized Facial Expression Detection and Mobile Lockscreen application for Emotion Mining and Quantified Self," Journal of KIISE, Vol. 42, No. 11, pp. 1459-1466, 2015. https://doi.org/10.5626/JOK.2015.42.11.1459
  2. J. S. Park, J. M. Lim, H. T. Jeong, "State-of-the-Art on Quantified Self Technology Based on Wearable Sensing," Electronics and Telecommunications Trends, Vol. 30, No. 4, pp. 1-11, 2015.
  3. S. Park, D. Jeung, G. Noh, J. Cho, "A study on the human emotion infer in meaningful place using HRV signal and text mapping," Proceedings of HCI Korea, pp. 253-260, 2014.
  4. J. K. Lee, J. H. Kang, E. S. Ahn, M. J. Oh, H. Jo, "Influencing Factors on Intention to Adopt of Wearable Device : Focusing on the Smart Watch," The Journal of Internet Electronic Commerce Research, Vol. 16, No. 1, pp. 195-213, 2016.
  5. C. Dobbins, R. Rawassizadeh, " Clustering of Physical Activities for Quantified Self and mHealth Applications," CIT/IUCC/DASC/PICOM, 2015 IEEE Internat, pp. 1423-1428, 2015.
  6. H. S. Jung, "Trends and Prospects of Healthcare Wearable Devices," Journal of KHIDI, Vol. 115, pp. 1-20, 2014.
  7. S. M. Kim, "Study on the Usage of Location-Based Services App on SmartPhones : Focusing on the Perceived Risk," Hanyang Cyber University, MS. thesis, 2014.
  8. J. Yim, J. Joo, S. Jeong, "Integrated Indoor Positioning Systems Reflecting Map Information for Location Based Services," The Journal of Information Systems, Vol. 17, No. 1, pp. 131-153, 2008. https://doi.org/10.5859/KAIS.2008.17.1.131
  9. K. J. Park, H. Jeong, "Assessing Methods of Heart Rate Variability," Korean J Clin Neurophysiol. 2014 Dec;16(2):49-54. https://doi.org/10.14253/kjcn.2014.16.2.49
  10. Lee, J. H, Kim, K.H, "A Study of Bio signal Analysis System for Sensibility Evaluation," Journal of Korea Society of Computer and Information, Vol. 15, No. 12, pp. 19-26, 2010. https://doi.org/10.9708/jksci.2010.15.12.019
  11. C. Y. Lee, B. J. Lee, K.W. On, J. W. Ha, H. I. Kim, B. T. Jang, "Place Recognition Using Ensemble Learning of Mobile Multimodal Sensory Information," KIISE Transactionsons on Computing Practices, Vol. 21, No. 1, pp. 64-99, 2015. https://doi.org/10.5626/KTCP.2015.21.1.64
  12. K. Y. Chung, "Correlation between Visual Sensibility and Vital Signal using Wearable based Electrocardiogram Sensing Clothes," Journal of The Korea Contents Association, Vol. 9, No. 12, pp. 596-503, 2009.
  13. https://en.wikipedia.org/wiki/K-means_clustering
  14. J. S. Lim, J. M. Kim, "An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter," Journal of Korea Multimedia Society, Vol. 17, No. 2, pp. 232-239, 2014. https://doi.org/10.9717/kmms.2014.17.2.232
  15. E. J. Lee, S.K. Yoo, "The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection," Vol. 50, No. 11, pp. 206-216, 2013. https://doi.org/10.5573/ieek.2013.50.11.206
  16. H. S. Choi, "Developed QS (Quantified Self) based emotional reasoning application," Daegu University, MS thesis, 2017.