Acknowledgement
Supported by : National Natural Science Foundation of China, Jilin University
References
- Aydin, K. (2007), "Vibratory characteristics of axially-loaded timoshenko beams with arbitrary number of cracks", J. Vib. Acoust., 129(3), 341-354. https://doi.org/10.1115/1.2731411
- Dormand, J.R. and Prince, P.J. (1980), "A family of embedded Runge-Kutta formulae", J. Comput. Appl. Math., 6(1), 19-26. https://doi.org/10.1016/0771-050X(80)90013-3
- El-Sayed, T. and Farghaly, S.H. (2016), "Exact vibration of Timoshenko beam combined with multiple mass spring subsystems", Struct. Eng. Mech., 57(6), 989-1014. https://doi.org/10.12989/sem.2016.57.6.989
- Kahaner, D., Moler, C. and Nash, S. (1989), Numerical Methods and Software, Prentice Hall, Englewood Cliffs, New Jersey, USA.
- Khiem, N.T. and Lien, T.V. (2001), "A simplified method for natural frequency of a multiple cracked beam", J. Sound Vib., 245(4), 737-751. https://doi.org/10.1006/jsvi.2001.3585
- Kisa, M., Brandon, J. and Topcu, M. (1998), "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", Comput. Struct., 67(4), 215-223. https://doi.org/10.1016/S0045-7949(98)00056-X
- Krawczuk, M., Palacz, M. and Ostachowicz, W. (2003), "The dynamic analysis of a cracked Timoshenko beam by the spectral element method", J. Sound Vib., 264(5), 1139-1153. https://doi.org/10.1016/S0022-460X(02)01387-1
- Li, Q.S. (2003), "Vibratory characteristics of timoshenko beams with arbitrary number of cracks", J. Eng. Mech., 129(11), 1355-1359. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:11(1355)
- Lin, H.P. (2004), "Direct and inverse methods on free vibration analysis of simply supported beams with a crack", Eng. Struct., 26(4), 427-436. https://doi.org/10.1016/j.engstruct.2003.10.014
- Lin, H.Y. (2009), "On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a number of various concentrated elements", J. Sound Vib., 319(1-2), 593-605. https://doi.org/10.1016/j.jsv.2008.05.022
- Loya, J.A., Rubio, L. and Fernandez-Saez, J. (2006), "Natural frequencies for bending vibrations of Timoshenko cracked beams", J. Sound Vib., 290(3-5), 640-653. https://doi.org/10.1016/j.jsv.2005.04.005
- Mazanoglu, K., Yesilyurt, I. and Sabuncu, M. (2009), "Vibration analysis of multiple-cracked non-uniform beams", J. Sound Vib., 320(4), 977-989. https://doi.org/10.1016/j.jsv.2008.09.010
- Rossi, R.E., Laura, P.A.A., Avalos, D.R. and Larrondo, H. (1993), "Free Vibrations of Timoshenko Beams Carrying Elastically Mounted, Concentrated Masses", J. Sound Vib., 165(2), 209-223. https://doi.org/10.1006/jsvi.1993.1254
- Swamidas, A.S.J., Seshadri, R. and Yang, X. (2004), "Identification of cracking in beam structures using Timoshenko and Euler formulations", J. Eng. Mech., 130(11), 1297-1308. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1297)
- Tada, H., Paris, P. and Irwin, G. (1985), The Stress Analysis of Cracks Handbook, 2nd Edition, Paris Productions, St. Louis, USA.
- Torabi, K., Afshari, H. and Haji Aboutalebi, F. (2014), "A DQEM for transverse vibration analysis of multiple cracked nonuniform Timoshenko beams with general boundary conditions", Comput. Math. Appl., 67(3), 527-541. https://doi.org/10.1016/j.camwa.2013.11.010
- Valiente, A., Elices, M. and Ustariz, F. (1990), "Determinacion de esfuerzos y movimientos en estructuras lineales con secciones fisuradas", Anales de Mecanica de la Fractura, 7, 272-277. (in Spanish)
- Viola, E., Federici, L. and Nobile, L. (2001), "Detection of crack location using cracked beam element method for structural analysis", Theor. Appl. Fract. Mech., 36(1), 23-35. https://doi.org/10.1016/S0167-8442(01)00053-2
- Wang, J.R., Liu, T.L. and Chen, D.W. (2007), "Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia", Struct. Eng. Mech., 26(1), 1-14. https://doi.org/10.12989/sem.2007.26.1.001
- Wu, J.S. and Chang, B.H. (2013) "Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method" Eur. J. Mech.-A/Solid., 38(3), 20-37. https://doi.org/10.1016/j.euromechsol.2012.08.003
- Wu, J.S. and Chen, D.W. (2001), "Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems by using the numerical assembly technique", Int. J. Numer. Meth. Eng., 50(5), 1039-1058. https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D
- Yesilce, Y. and Demirdag, O. (2008), "Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems", Int. J. Mech. Sci., 50(6), 995-1003. https://doi.org/10.1016/j.ijmecsci.2008.03.001
- Yesilce, Y., Demirdag, O. and Catal, S. (2008), "Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems", Sadhana, 33(4), 385-401. https://doi.org/10.1007/s12046-008-0026-1
- Zheng, D.Y. and Fan, S.C. (2001), "Natural frequencies of a nonuniform beam with multiple cracks via modified Fourier series", J. Sound Vib., 242(4), 701-717. https://doi.org/10.1006/jsvi.2000.3360
- Zheng, D.Y. and Fan, S.C. (2001), "Natural frequency changes of a cracked Timoshenko beam by modified Fourier series", J. Sound Vib., 246(2), 297-317. https://doi.org/10.1006/jsvi.2001.3632
- Zheng, T. and Ji, T. (2012), "An approximate method for determining the static deflection and natural frequency of a cracked beam", J. Sound Vib., 331(11), 2654-2670. https://doi.org/10.1016/j.jsv.2012.01.021
Cited by
- Free Vibration of the Cracked Non-uniform Beam with Cross Section Varying as Polynomial Functions vol.22, pp.11, 2017, https://doi.org/10.1007/s12205-018-1833-5
- Vibratory characteristics of cracked non-uniform beams with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.1007/s12206-018-1238-x
- Free vibration of multi-cracked beams vol.79, pp.4, 2017, https://doi.org/10.12989/sem.2021.79.4.441