DOI QR코드

DOI QR Code

볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험

Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles

  • Kim, Hyeon Jin (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Hwang, Hyeon Jong (College of Civil Engineering, Hunan University) ;
  • Park, Hong Gun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Kim, Dong Kwan (Dept. of Architectural Engineering, Cheongju University) ;
  • Yang, Jong Min (Sen Structural Engineers Co. Ltd.)
  • 투고 : 2017.02.02
  • 심사 : 2017.05.25
  • 발행 : 2017.06.27

초록

볼트접합 앵글을 사용한 선조립-SRC 합성기둥(이하 PSRC 합성기둥)의 구조성능을 평가하기 위하여 PSRC 기둥실험체 6개와 일반 SRC 기둥실험체 2개에 대하여 편심축 압축실험을 수행하였다. 횡보강재의 수직간격 및 단면형상과 축하중의 편심율을 실험변수로 고려하였다. 실험결과, 편심율이 큰 경우 PSRC 실험체는 단면 코너에 위치한 고강성 앵글로 인하여 압축하중 재하능력 및 변형능력이 기존 SRC 실험체보다 향상되었다. PSRC 기둥 실험체에서 횡방향 강판의 좁은 횡보강 간격과 Z형 단면의 횡방향 강판은 우수한 횡구속력을 제공하였으며, 하중재 하능력을 향상시켰다. 실험 및 수치해석을 통한 합성기둥의 휨 압축 강도는 현행설계기준에 의한 휨-압축 상관도를 상회하였다. 수치해석결과는 각 실험체의 강성, 최대강도, 최대하중 이후 강도감소거동을 비교적 잘 예측하였다.

In order to investigate the structural performance of a novel prefabricated-SRC column using bolt-connected steel angles(PSRC column), eccentric axial loading tests were performed for six PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and eccentricity ratio of axial load. The test results showed that, due to high axial-stiffness of the angles located at the corners of the cross section, the compressive load-carrying capacity and deformation capacity of the PSRC specimens were greater than those of the SRC specimens in the large eccentricity ratio of axial load. Closely spaced lateral steel plates and Z-shaped lateral steel plates improved lateral confinement, which increased the load-carrying capacity of the PSRC specimens. The combined flexural and axial load-carrying capacity of the specimens by tests and nonlinear numerical analysis were greater than the predictions by current design codes. The numerical analysis agreed well with the test results including the initial stiffness, peak strength, and post-peak strength degradation.

키워드

참고문헌

  1. 황현종, 엄태성, 박홍근, 이창남, 김형섭(2012) 고강도 앵글을 적용한 선조립 합성기둥의 압축실험, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.361-369. Hwang, H.J., Eom, T.S., Park, H.G., Lee, C.N., Kim, H.S. (2012) Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.4, pp.361-369 (in Korean).
  2. 엄태성, 황현종, 박홍근, 이창남, 김형섭(2012) 앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험, 한국강구조학회논문집, 한국강구조학회, 제24권, 제5호, pp.535-547. Eom, T.S., Hwang, H.J., Park, H.G., Lee, C.N., Kim, H.S. (2012) Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.5, pp.535- 547 (in Korean).
  3. 김창수, 박홍근, 최인락, 정경수, 김진호(2010) 800MPa 강재 및 100MPa 콘크리트를 적용한 매입형 합성기둥의 구조 성능, 한국강구조학회논문집, 한국강구조학회, 제22권, 제 5호, pp.497-509. Kim, C.S., Park, H.G., Choi, I.R., Chung, K.S., and Kim, J.H. (2012) Structural performance of concrete-encased steel columns using 800MPa steel and 100MPa concrete, Journal of Korean Society of Steel Construction, KSSC, Vol.22, No.5, pp.497-509 (in Korean).
  4. Campione, G. (2012) Load carrying capacity of RC compressed columns strengthened with steel angles and strips, Engineering Structures, Elsevier, Vol.40, No.1, pp.457-465. https://doi.org/10.1016/j.engstruct.2012.03.006
  5. Montuori, R. and Piluso, V. (2009) Reinforced concrete columns strengthened with angles and battens subjected to eccentric load, Engineering Structures, Elsevier, Vol.31, No.2, pp.539-550. https://doi.org/10.1016/j.engstruct.2008.10.005
  6. 김현진, 황현종, 박홍근, 김동관, 양종민(2017) 볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험, 한국강구조학회논문집, 한국강구조학회, 제29권, 제2호, pp.147-158. Kim, H.J., Hwang, H.J., Park, H.G., Kim, D.K., and Yang, J.M. (2012) Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles, Journal of Korean Society of Steel Construction, KSSC, Vol.29, No.2, pp.147-158 (in Korean).
  7. 대한건축학회(2016) 건축구조설계기준 및 해설(KBC 2016), 기문당. AIK (2009) Korean building code and commentary - structural, Architectural Institute of Korea (in Korean).
  8. AISC 360 (2010) Specification for Structural Steel Building (ANSI/AISC 360-10), American Institute of Steel Construction, USA.
  9. Cusson, D. and Paultre, P. (1995) Stress-Strain Model for Confined High-Strength Concrete, Journal of Structural Engineering, Vol.121, No.3, pp.468-477. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468)
  10. ACI 318 (2014) Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, USA.
  11. Eurocode 4 (2004) Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings, CEN, Belgium.
  12. Eurocode 3 (2005) Design of Steel Structures-Part 1-1: General Rules and Rules for Buildings, CEN, Belgium.
  13. Eurocode 2 (2004) Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, CEN, Belgium.
  14. Scott, B.D., Park, R., and Priestley, M.J.N. (1982) Stress- Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates, J. American Concrete Institute, Vol.79, No.1, pp.13-27.