• 제목/요약/키워드: Lateral confinement

검색결과 208건 처리시간 0.023초

농어촌 지역 RC 건축물 기둥 부재의 탄소섬유시트 횡보강 효과 (Effects of Carbon-Fiber Sheets on Lateral Confinement in Columns of RC Buildings in Rural Area)

  • 김윤일;천형민
    • 한국농촌건축학회논문집
    • /
    • 제6권3호
    • /
    • pp.106-115
    • /
    • 2004
  • In this paper, the compressive strength and ductility enhancement of concrete by lateral confinement of carbon-fiber sheets(CFS) have been studied experimentaly with cylinder specimens and square short columns reinforced externally by CFS. Test variables were amount of lateral reinforcement by CFS and space of hoop bars. Test results showed that lateral reinforcements by carbon-fiber sheets provided lateral confinement successfully for the concrete specimens and were more effective for ductility enhancement than for strength increase, and that the lateral confinement coefficient of cabon-fiber sheets increased according to narrowing the space of hoop bars in the double lateral confinement made by CFS and hoop bars.

  • PDF

단부구속 효과에 따른 철근콘크리트 T형 벽체의 구조성능 평가에 관한 실험적 연구 (Experimental Study of Structural Capacity Evaluation of RC T-shape Walls with the Confinement Effect)

  • 하상수;윤현도;최창식;오영훈;이원호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.191-196
    • /
    • 2001
  • The structural performance of a shear wall subjected to lateral loads is influenced by many factors, such as sectional shape, aspect ratio, vertical and horizontal reinforcement, lateral confinement and axial compression, etc. This experimental research is focusing to investigate the structural performance of T-shaped walls with different confining reinforcement. Experimental results show that all specimens finally failed by the crushing of the concrete in the compression zone. Although the location and content of the lateral confinement is different, the results are very similar during the negative loading direction where the flange is compressed. However, when flange is subjected to tension, the location and content of the lateral confinement results in a large difference in the structural performance of T-shaped walls. Therefore, selection of location and content of the lateral confinement would be important aspect in the design of the nonsymmetric structural walls.

  • PDF

고강도 콘크리트 부재의 횡보강 효과에 관한 연구 (The Lateral Confinment Effects of Spiral Reinforcement of High Strength Concrete Columns.)

  • 신성우;권영호;이광수;오정근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.63-67
    • /
    • 1989
  • Various studies have been done to investigate the effectiveness of lateral confinement of lower strength concrete(below 420kg/$\textrm{cm}^2$). But little research its effectiveness for high strength concrete. A certain concern has been arised that the beneficial effect of lateral confinement in high strength concrete may be different from that in lower strength. This study aimed to investigate that concern with different confinement spacing(D/2 : D/4). The results show that beneficial effects of spiral confinement are more pronounced for lower strength concrete as compared to higher strength concrete.

  • PDF

외측 횡보강재로 구속된 철근콘크리트 기둥의 내진성능 (Seismic Performance of RC Columns Confined by Outside Lateral Reinforcement)

  • 이도형;오장균;유완동;최은수
    • 대한토목학회논문집
    • /
    • 제32권3A호
    • /
    • pp.189-196
    • /
    • 2012
  • 본 연구에서는 철근콘크리트 기둥의 심부구속 철근 이외에 추가적인 외측 횡 보강재료를 보강한 실험체에 대해 반복주기가력 실험을 수행하였다. 이 목적을 위해 스테인레스 강과 GFRP를 사용하여 외측 횡보강재료를 제작하였고, 실험의 주요 변수로 외측 횡보강재의 종류, 두께 및 보강간격을 선택하였다. 실험결과, 외측 횡보강된 실험체는 무보강 실험체에 비해 연성능력 및 에너지 소산능력의 향상을 확인하였고, 본 연구를 통하여 제안된 외측 횡보강재를 사용한 횡구속 방법은 철근콘크리트 기둥부재의 내진보강에 유용하게 사용할 수 있을 것으로 판단된다.

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

벽체 단부의 횡보강근 양에 따른 변형능력의 평가 (Effect of Edge Confinement on Deformation Capacity in the Isolated RC Structural Walls)

  • 한상환;오영훈;이리형
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.101-112
    • /
    • 1999
  • Structural walls have been mostly used for the design of reinforced concrete buildings in seismic areas because they play a role as an efficient bracing system and offer great potential for lateral load resistance and drift control. The lateral resistance system for the earthquake load should be designed to have enough ductility and stable hysteretic response in the critical regions where plastic deformation occurred beyond yielding. The behavior of the reinforced concrete element to experience large deformation in the critical areas by a major earthquake is affected by the performance of the confined core concrete. Thus, the confinement of concrete by suitable arrangements of transverse reinforcement results in a significant increase in both the strength and ductility of compressed concrete. This paper reports the experimental results of reinforced concrete structural walls for wall-type apartment structure under axial loads and cyclic reversal of lateral loads with different confinement of the boundary elements. The results show that confinement of the boundary element by open 'U'-bar and cross tie is effective. The shear strength capacity is not increased by the confinement but deformation capacity is improve.

Confinement evaluation of concrete-filled box-shaped steel columns

  • Susantha, K.A.S.;Ge, Hanbin;Usami, Tsutomu
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.313-328
    • /
    • 2001
  • This paper presents a three-dimensional finite element analysis methodology for a quantitative evaluation of confinement in concrete-filled box-shaped unstiffened steel columns. The confinement effects of concrete in non-circular sections can be assessed in terms of maximum average lateral pressure. A brief review of a previous method adopted for the same purpose is also presented. The previous method is based on a two-dimensional finite element analysis method involving a concrete-steel interaction model. In both the present and previous methods, average lateral pressure on concrete is computed by means of the interaction forces present at the concrete-steel interface. Subsequently, the strength enhancement of confined concrete is empirically related to the maximum average lateral pressure. The results of the former and latter methods are then compared. It is found that the results of both methods are compatible in terms of confined concrete strengths, although the interaction model yields a somewhat overestimated estimation of confinement than those of the present method when relatively high strength concrete is used. Furthermore, the confinement in rectangular-shaped sections is investigated and the reliability of previously adopted simplifications in such cases is discussed.

FRP로 횡보강된 콘크리트 공시체의 압축강도 향상에 관한 연구 (Compressive Strength Enhancement of Concrete Cylinders Confined with FRP Wrapping)

  • 김영섭;정영수;박창규;송희원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.351-354
    • /
    • 2003
  • Triaxial behavior of concrete cylinders wrapped with FRP material has been investigated for the increase of concrete strength by lateral confinement. Using the model by Richart et al., a modified empirical equation was proposed to estimate the strength of concrete cylinders with FRP confinement based on the linear relationship between the concrete strength and lateral confining pressure. From the experimental stress-strain result of the cylinder specimens having similar confining pressure, less ductility was observed for higher strength concrete. But the compressive strength of the specimen was linearly increased by lateral confinement. The confinement effectiveness coefficient for the strength enhancement of the cylinders by FRP wrap was obtained as 2.27 from the regression analysis.

  • PDF

나선근에 의한 고강도 콘크리트 기둥부재의 횡보강효과에 관한 연구 (A Study on the Lateral Confinement Effects of Spiral High-Strength Concrete Columns)

  • 박훈규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.547-552
    • /
    • 1998
  • Lateral pressure by circular reinforcement greatly enhances the maximum strength and ductility of spiral columns. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at that point of spiral concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at that point was proposed. It is based on calculation of lateral confinement pressure generated by circular reinforcement, and the resulting improvements in strength and ductility of confined concrete.

  • PDF