DOI QR코드

DOI QR Code

Simulation of Horizontal Thin-film Thermoelectric Cooler for the Mobile Electronics Thermal Management

모바일 전자기기의 열점 제어를 위한 수평형 박막 열전 냉각 소자의 모사 해석

  • Park, Sangkug (Department of Mechanical Engineering, Soonchunhyang University) ;
  • Park, Hong-Bum (Department of Materials Science and Engineering, Seoul National University) ;
  • Joo, Young-Chang (Department of Materials Science and Engineering, Seoul National University) ;
  • Joo, Youngcheol (Department of Mechanical Engineering, Soonchunhyang University)
  • 박상국 (순천향대학교 기계공학과) ;
  • 박홍범 (서울대학교 재료공학부) ;
  • 주영창 (서울대학교 재료공학부) ;
  • 주영철 (순천향대학교 기계공학과)
  • Received : 2017.01.31
  • Accepted : 2017.04.10
  • Published : 2017.06.30

Abstract

Horizontal thin-film thermoelectric cooler has been simulated using a commercial software (ANSYS Workbench Thermal-electric). The thermoelectric cooler consists of thin-film n-type $Bi_2Te_3$, p-type $Sb_2Te_3$ thermoelectric elements, and Au electrode, respectively. The hot spot was placed under the center of device which represents Joule heating. Numerical analysis was conducted by geometric variable, and a maximum temperature difference of $13^{\circ}C$ was obtained. As from the simulation parameters, we presented an optimized design for high efficiency cooling.

본 연구에서는 수평형 열전 냉각 소자의 열전 냉각 성능 극대화를 위해 모사 해석을 수행하였다. ANSYS Workbench의 Thermal-Electric 프로그램을 활용한 모사 해석을 진행하였으며 해당 프로그램은 열전 효과에 초점이 맞춰 있어 보다 정확하고 효과적인 모사 해석이 가능하다. 수평형 열전 냉각 소자는 n-type의 $Bi_2Te_3$와 p-type의 $Sb_2Te_3$ 및 Au 금속 전극으로 가정하였으며, Joule 발열이 소자 중앙 하부에서 발생되는 것으로 가정하였다. 모사 해석을 통해 최대 $13^{\circ}C$의 냉각 효과를 확인하였으며, 이런 기하학적인 변수들로부터 냉각 성능을 최적화 할 수 있는 디자인을 제시하였다.

Keywords

References

  1. O. Sahin, and A. K. Coskun, "On the impacts of greedy thermal management in mobile devices", IEEE Embedded Sys. Lett., 7(2), 55 (2015). https://doi.org/10.1109/LES.2015.2420664
  2. D. M. Rowe, "Thermoelectric module design theories", Thermoelectrics Handbook Macro to Nano, G. Min, 11.6, CRC Press, Boca Raton, USA (2006).
  3. J. M. Bae, M. Y. Kim, and T. S. Oh, "Fabrication Process and Sensing Characteristics of the In-plane Thermoelectric Sensor Consisting of the Evaporated p-type Sb-Te and n-type Bi-Te Thin Films", J. Microelectron. Packag. Soc., 19(1), 33 (2012). https://doi.org/10.6117/kmeps.2012.19.1.033
  4. L. M. Goncalves, C. A. Couto, P. B. Alpuim, G. C. Min, D. M. Rowe, and J. H. Correia, "Fabrication of flexible thermoelectric microcoolers using planar thin-film technologies", J. Micromechanics and Microengineering, 17(7), 168 (2007). https://doi.org/10.1088/0960-1317/17/7/S14
  5. J. J. Lee, C. H. Yu, H. S. Kang, and J. S. Koh, "The Characteristic of TEC Power Consumption of Laser Diode Module", J. Microelectron. Packag. Soc., 11(3), 71 (2004).
  6. K. H. Lee, and O. J. Kim, "Simulation of the cooling system using thermoelectric micro-coolers for hot spot mitigation", Proc. 26th International Conference on Thermoelectrics (ICT), Jeju Island, 279, IEEE (2007).
  7. N. W. Park, T. H. Park, J. Y. Ahn, W. Y. Lee, and Y. G. Yoon, "Thermoelectric characterization and fabrication of nanostructured p-type $Bi_{0.5}Sb_{1.5}Te_3$ and n-type $Bi_2Te_3$ thin film thermoelectric energy generator with an in-plane planar structure", AIP Advances, 6(6) 065123 (2016). https://doi.org/10.1063/1.4955000
  8. E. E. Antonova, and D. C. Looman, "Finite elements for thermoelectric device analysis in ANSYS", Proc. 24th International Conference on Thermoelectrics (ICT), Clemson, 215, IEEE (2005).
  9. Software administrator, "ANSYS Mechanical APDL Coupled-Field Analysis Guide", Canonsburg, USA, (2004) from http://www.ansys.com
  10. Software administrator, "ANSYS Thermoelectric Generator (TEG) Tutorial", 46-50, Canonsburg, USA, (2004) from http://www.ansys.com
  11. L. Rushing, A. Shakouri, P. Abraham, and E. Bowers, "Micro Thermoelectric Coolers for Integrated Applications", Proc. 16th International Conference on Thermoelectrics (ICT), Dresden, 646, IEEE (1997).
  12. G. J. Snyder, J. P. Fleurial, T. Caillat, R. Yang, and G. Chen, "Supercooling of Peltier cooler using a current pulse", J. Appl. Phys., 92(3), 1564 (2002). https://doi.org/10.1063/1.1489713