DOI QR코드

DOI QR Code

Dielectric Properties in the Pb1-3x/2Lax[(Mg1/3Ta2/3)0.66Zr0.34]O3 Systems

  • Kim, Yeon Jung (Center for Innovative Engineering Education, Dankook University)
  • Received : 2017.07.16
  • Accepted : 2017.07.26
  • Published : 2017.07.31

Abstract

The dielectric constant and loss of poling/non-poling was measured in the $Pb_{1-3x/2}La_x[(Mg_{1/3}Ta_{2/3})_{0.66}Zr_{0.34}]O_3$ samples. The addition of $La^{3+}$ to the $Pb_{1-3x/2}La_x[(Mg_{1/3}Ta_{2/3})_{0.66}Zr_{0.34}]O_3$ did not cause a large change in grain size. But the addition of $La^{3+}$ did show transition temperature, which shifted toward low temperature in the $Pb[(Mg_{1/3}Ta_{2/3})Zr]O_3$ systems. In addition, the dielectric and pyroelectric properties (${\varepsilon}{\sim}20000$, $p{\sim}0.03C/m^2K$) of this system using $La^{3+}$ have been greatly improved. Pyroelectrics $Pb_{0.97}La_{0.02}(Mg_{1/3}Ta_{2/3})_{0.66}Zr_{0.34}]O_3$ system was found to have a relatively high ferroelectric FOMs ($F_V{\sim}0.035m^2/C$, $F_D{\sim}0.52{\times}10^{-4}Pa^{-1/2}$) at room temperature. Spontaneous polarization showed a value of $0.27{\sim}0.35C/m^2$ in the composition added to $La^{3+}$. The piezoelectric constant ($d_{33}=350{\sim}490pC/N$) and electromechanical coupling factor ($k_P=0.25{\sim}0.35$) are obtained in $Pb_{1-3x/2}La_x[(Mg_{1/3}Ta_{2/3})_{0.66}Zr_{0.34}]O_3$ compositions with $La^{3+}$ dopant.

Keywords

References

  1. G.A.Smolenskii and A.I.Agranovskaya, Sov. Phys. Tech. Phys., 3, 1380 (1958).
  2. R. G. Burkovsky, I. Bronwald, D. Andronikova, B. Wehinger, M. Krisch, J. Jacobs, D. Gambetti, K. Roleder, A. Majchrowski, A. V. Filimonov, A.I. Rudskoy, S. B. Vakhrushev, and A. K. Tagantsev, Nature (Scientific Reports), 7, 41512 (2017). https://doi.org/10.1038/srep41512
  3. Y. J. Kim, J. M. Jung, Y. H. Shin, Y. H. Park, and S. W. Choi, Ferroelectrics, 195, 55, (1997). https://doi.org/10.1080/00150199708260487
  4. S. L. Swartz and T. R. Shrout, Mat. Res. Bull., 17, 1245 (1982). https://doi.org/10.1016/0025-5408(82)90159-3
  5. R. L. Byer and C. B. Roundy, Ferroelectrics, 3, 333 (1972). https://doi.org/10.1080/00150197208235326
  6. Proc. IRE. Inst. Radio Engrs., 49(7), 1161 (1961).
  7. Z. Song, Y. Zhang, C. Lu, Z. Ma, Z. Hu, L. Wang, and C. Liu, Ceramics International, 43, 3720 (2017). https://doi.org/10.1016/j.ceramint.2016.11.222
  8. P. Pandit and P Bangotra, Advaced Materials Proceedings, 1(2), 131 (2016).
  9. Y. Xu, Ferroelectric Materials and Their Applications, Elsevier Science Publishers B.V. (1992).
  10. N. Kim, W. Huebner, S. J. Jang, and T. R. Shrout, Ferroelectrics, 93, 341 (1989). https://doi.org/10.1080/00150198908017366
  11. D. Viehland, S. J. Jang, and L. E. Cross, J. Appl. Phys., 69(1), 414 (1991). https://doi.org/10.1063/1.347732
  12. I. W. Chen, P. Li, and Y. Wang, J. Phys. Chem. Solids, 57(10), 1525 (1996). https://doi.org/10.1016/0022-3697(96)00023-6
  13. S. E. Park and T. R. Shrout, J. Appl. Phys., 82(4), 15(1997).
  14. M. T. Kesim, J. Zhang, S. Trolier-McKinstry, J. V. Mantese, R. W. Whatmore, and S. P. Alpay, J. Appl. Phys., 114, 204104 (2013).
  15. A. Movchikova, N. Neumann, S. G. Lee, M. Es-Souni, and M. Dietze, AMA Conferences 2013-Sensor 2013, 16 (2013).