DOI QR코드

DOI QR Code

Electrochemical Properties of Activated Carbon Supecapacitor Adopting Poly(acrylonitrile) Separator Coated by Polymer-Alkaline Electrolytes

고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성

  • Kim, Kwang Man (Research Group of Multidisciplinary Sensors, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Young-Gi (Research Group of Multidisciplinary Sensors, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김광만 (한국전자통신연구원 ICT소재부품연구소 융복합센서연구그룹) ;
  • 이영기 (한국전자통신연구원 ICT소재부품연구소 융복합센서연구그룹) ;
  • 고장면 (한밭대학교 화학생명공학과)
  • Received : 2017.01.24
  • Accepted : 2017.05.22
  • Published : 2017.08.01

Abstract

Alkaline electrolytes consisting of 6 M KOH and polymer (PEO, PVA, and PAAK) are coated on PAN nonwoven fabrics as a separator, and the electrochemical properties of the activated carbon supercapacitor adopting them are investigated in terms of redox behavior, specific capacitance, and interfacial impedance. Although the interaction between polymer and KOH are comparatively inactive in PEO and PVA, PAAK (3 wt.%)-KOH forms a hydrogel phase by active interactions between $COO^-K^+$ in side-chain of PAAK and $K^+OH^-$ from alkaline electrolyte solution, improving ionic conduction of electrolytes and the electrochemical properties of the supercapacitor. As a result, the activated supercapacitor adopting the PAAK-KOH shows the superior specific capacitance of $46.8Fg^{-1}$ at $100mVs^{-1}$.

Poly(acrylonitrile) (PAN) 부직포 분리막 상에 poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), potassium poly(acrylate) (PAAK)의 각 고분자와 6 M KOH로 조성된 전해질을 코팅하고 이를 활성탄 수퍼커패시터에 적용하여 고분자 종류에 따른 전기화학적 특성을 조사하였다. 특징적으로 PEO와 PVA는 그 고분자 사슬의 자체 구조로 인해 알칼리 전해액 성분 (KOH)과의 상호작용이 활성적이지 않은데 반하여, PAAK는 3 wt% 함량만으로도 주사슬 및 곁사슬에 분포하는 $COO^-K^+$ 이온쌍과 전해액 내 해리되어 있는 $K^+$$OH^-$ 이온들과의 상호작용이 활성적으로 진행되어 하이드로겔을 형성하며, 이것이 이온전도 및 수퍼커패시터의 전기화학적 특성에 큰 영향을 주었다. 결과적으로 PAAK-KOH 전해질/PAN 분리막으로 포함한 활성탄 수퍼커패시터가 가장 우수한 축전용량 ($100mVs^{-1}$에서 $46.8Fg^{-1}$)을 나타내었다.

Keywords

References

  1. Matsuda, Y., Morita, M., Ishikawa, M. and Ihara, M., "New Electric Double-Layer Capacitor Using Polymer Solid Electrolytes Containing Tetraalkylammonium Salts," J. Electrochem. Soc., 140(7), L109-L110(1993). https://doi.org/10.1149/1.2220779
  2. Ishikawa, M., Morita, M., Ihara, M. and Matsuda, Y., "Electric Double-Layer Capacitor Composed of Activated Carbon Fiber Cloth Electrodes and Solid Polymer Electrolytes Containing Alkylammonium Salts," J. Electrochem. Soc., 141(7), 1730-1734(1994). https://doi.org/10.1149/1.2054995
  3. Ishikawa, M., Ihara, M., Morita, M. and Matsuda, Y., "Electric Double Layer Capacitors with New Gel Electrolytes," Electrochim. Acta, 40(13-14), 2217-2222(1995). https://doi.org/10.1016/0013-4686(95)00166-C
  4. Liu, X. and Osaka, T., "Properties of Electric Double-Layer Capacitors with Various Polymer Gel Electrolytes," J. Electrochem. Soc., 144(9), 3066-3071(1997). https://doi.org/10.1149/1.1837960
  5. Lewandowski, A. and Krzyzanowski, M., "A New Polymer Electrolyte Poly(acrylonitrile)-Dimethylsulphoxide-Salt for Electrochemical Capacitors," Electrochim. Acta, 48(10), 1325-1329(2003). https://doi.org/10.1016/S0013-4686(02)00818-6
  6. Lewandowski, A., Skorupska, K. and Malinska, J., "Novel Poly(vinyl alcohol)-KOH-$H_2O$ Alkaline Polymer Electrolyte," Solid State Ionics, 133(3-4), 265-271(2000). https://doi.org/10.1016/S0167-2738(00)00733-5
  7. Yang, C.-C. and Lin, S.-J., "Preparation of Composite Alkaline Polymer Electrolyte," Mater. Lett., 57(4), 873-881(2002). https://doi.org/10.1016/S0167-577X(02)00888-1
  8. Yang, C.-C., "Chemical Composition and XRD Analyses for Alkaline Composite PVA Polymer Electrolyte," Mater. Lett., 58(1-2), 33-38(2003). https://doi.org/10.1016/S0167-577X(03)00409-9
  9. Palacios, I., Castillo, R. and Vargas, R. A., "Thermal and Transport Properties of the Polymer Electrolyte Based on Poly(vinyl alcohol)-KOH-$H_2O$," Electrochim. Acta, 48(14-16), 2195-2199(2003). https://doi.org/10.1016/S0013-4686(03)00204-4
  10. Wada, H., Yoshikawa, K., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H. and Iwakura, C., "Electrochemical Characteristics of New Electric Double Layer Capacitor with Acidic Polymer Hydrogel Electrolyte," J. Power Sources, 159(2), 1464-1467(2006). https://doi.org/10.1016/j.jpowsour.2005.11.073
  11. Nohara, S., Wada, H., Furukawa, N., Inoue, H., Morita, M. and Iwakura, C., "Electrochemical Characterization of New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte," Electrochim. Acta, 48(6), 749-753(2003). https://doi.org/10.1016/S0013-4686(02)00744-2
  12. Iwakura, C., Wada, H., Nohara, S., Furukawa, N., Inoue, H. and Morita, M., "New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte," Electrochem. Solid-State Lett., 6(2), A37-A39(2003). https://doi.org/10.1149/1.1535752
  13. Wada, H., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H., Morita, M. and Iwakura, C., "Electrochemical Characteristics of Electric Double Layer Capacitor Using Sulfonated Polypropylene Separator Impregnated with Polymer Hydrogel Electrolyte," Electrochim. Acta, 49(27), 4871-4875(2004). https://doi.org/10.1016/j.electacta.2004.05.041
  14. Lee, K.-T. and Wu, N.-L., "Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte," J. Power Sources, 179(1), 430-434(2008). https://doi.org/10.1016/j.jpowsour.2007.12.057
  15. Yoon, C. S., Ko, J. M., Latifatu, M., Lee, H. S., Lee, Y.-G., Kim, K. M., Won, J. H., Jo, J., Jang, Y. and Kim, J. H., "Electrochemical Properties of Activated Carbon Supercapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte," Korean Chem. Eng. Res., 52(5), 553-557(2014). https://doi.org/10.9713/kcer.2014.52.5.553
  16. Lee, H. S., Park, J. W., Lee, Y. M., Ryou, M. H., Kim, K. M. and Ko, J. M., "Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes," Korean Chem. Eng. Res., 54(3), 293-298(2016). https://doi.org/10.9713/kcer.2016.54.3.293
  17. Cho, T. H., Sakai, T., Tanase, S., Kimura, K., Kondo, Y., Tarao, T. and Tanaka, M., "Electrochemical Performances of Polyacrylonitrile Nanofiber-Based Nonwoven Separator for Lithium-ion Battery," Electrochem. Solid-State Lett., 10(7), A159-A162(2007). https://doi.org/10.1149/1.2730727
  18. Carol, P., Ramakrishnan, P., John, B. and Cheruvally, G., "Preparation and Characterization of Electrospun Poly(acrylonitrile) Fibrous Membrane Based Gel Polymer Electrolytes for Lithiumion Batteries," J. Power Sources, 196(23), 10156-10162(2011). https://doi.org/10.1016/j.jpowsour.2011.08.037
  19. Yang, C., Jia, Z., Guan, Z. and Wang, L., "Polyvinylidene Fluoride Membrane by Novel Electrospinning System for Separator of Li-ion Batteries," J. Power Sources, 189(1), 716-720(2009). https://doi.org/10.1016/j.jpowsour.2008.08.060
  20. Hao, J., Lei, G., Li, Z., Wu, L., Xiao, Q. and Wang, L., "A Novel Polyethylene Terephthalate Nonwoven Separator Based on Electrospinning Technique for Lithium Ion Battery," J. Memb. Sci., 428, 11-16(2013). https://doi.org/10.1016/j.memsci.2012.09.058
  21. Latifatu, M., Ko, J. M., Lee, Y.-G. and Kim, K. M., "Electrochemical Properties of Activated Carbon Supercapacitor Containing Poly (acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte," Korean Chem. Eng. Res., 51(5), 550-555(2013). https://doi.org/10.9713/kcer.2013.51.5.550
  22. Fauvarque, J. F., Guinot, S., Bouzir, N., Salmon, E. and Penneau, J. F., "Alkaline Poly(ethylene oxide) Solid Polymer Electrolytes. Application to Nickel Secondary Batteries," Electrochim. Acta, 40(13-14), 2449-2453(1995). https://doi.org/10.1016/0013-4686(95)00212-W
  23. Salmon, E., Guinot, S., Godet, M. and Fauvarque, J. F., "Structural Characterization of New Poly(ethylene oxide)-Based Alkaline Solid Polymer Electrolytes," J. Appl. Polym. Sci., 65(3), 601-607(1997). https://doi.org/10.1002/(SICI)1097-4628(19970718)65:3<601::AID-APP20>3.0.CO;2-Y
  24. Guinot, S. Salmon, E., Penneau, J. F. and Fauvarque, J. F., "A New Class of PEO-Based SPEs: Structure, Conductivity and Application to Alkaline Secondary Batteries," Electrochim. Acta, 43(10-11), 1163-1170(1998). https://doi.org/10.1016/S0013-4686(97)10015-9
  25. Hassan, M. F. and Arof, A. K., "Ionic Conductivity in PEO-KOH Polymer Electrolytes and Electrochemical Cell Performance," Phys. Stat. Sol. (a), 202(13), 2494-2500(2005). https://doi.org/10.1002/pssa.200521188
  26. Yuan, A. and Zhao, J., "Composite Alkaline Polymer Electrolytes and Its Application to Nickel-Metal Hydride Batteries," Electrochim. Acta, 51(12), 2454-2462(2006). https://doi.org/10.1016/j.electacta.2005.07.027
  27. Vassal, N., Salmon, E. and Fauvarque, J.-F., "Electrochemical Properties of an Alkaline Solid Polymer Electrolyte Based on P(ECH-co-EO)," Electrochim. Acta, 45(8-9), 1527-1532(2000). https://doi.org/10.1016/S0013-4686(99)00369-2
  28. Mohamad, A. A., Mohamed, N. S., Yahya, M. Z. A., Othman, R., Ramesh, S., Alias, Y. and Arof, A. K., "Ionic Conductivity Studies of Poly(vinyl alcohol) Alkaline Solid Polymer Electrolytes and Its Use in Nickel-Zinc Cells," Solid State Ionics, 156(1-2), 171-177(2003). https://doi.org/10.1016/S0167-2738(02)00617-3
  29. Iwakura, C., Nohara, S., Furukawa, N. and Inoue, F., "The Possible Use of Polymer Gel Electrolytes in Nickel/Metal Hydride Battery," Solid State Ionics, 148(3-4), 487-492(2002). https://doi.org/10.1016/S0167-2738(02)00092-9
  30. Kwon, S. H., Kim, B.-S., Kim, S.-G., Lee, B.-J., Kim, M.-S. and Jung, J. C., "Preparation of Activated Carbon Aerogel and Its Application to Electrode Material for Electric Double Layer Capacitor in Organic Electrolyte: Effect of Activation Temperature," Korean J. Chem. Eng., 32(2), 248-254(2015). https://doi.org/10.1007/s11814-014-0215-z
  31. Cho, W.-J., Yeom, C. G., Kim, B. C., Kim, K. M., Ko, J. M. and Yu, K.-H., "Supercapacitive Properties of Activated Carbon Electrode in Organic Electrolytes Containing Single- and Double-Cationic Liquid Salts," Electrochim. Acta, 89, 807-813(2013). https://doi.org/10.1016/j.electacta.2012.10.085