참고문헌
- I. S. Baek, A note on the moments of the Riesz-Nagy-Takacs distribution, J. Math. Anal. Appl. 348 (2008), no. 1, 165-168. https://doi.org/10.1016/j.jmaa.2008.07.014
- I. S. Baek, Derivative of the Riesz-Nagy-Takacs function, Bull. Korean Math. Soc. 48 (2011), no. 2, 261-275. https://doi.org/10.4134/BKMS.2011.48.2.261
- I. S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267-287. https://doi.org/10.1016/j.aim.2007.02.003
-
R. Darst, The Hausdorff dimension of the nondifferentiability set of the Cantor function is
$(\frac{1n2}{1n3})^2$ , Proc. Amer. Math. Soc. 119 (1993), no. 1, 105-108. https://doi.org/10.1090/S0002-9939-1993-1143222-3 - R. Darst, Hausdorff dimension of sets of non-differentiability points of Cantor functions, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 1, 185-191. https://doi.org/10.1017/S0305004100073011
- F. M. Dekking and W. Li, How smooth is a devil's staircase?, Fractals 11 (2003), no. 1, 101-107. https://doi.org/10.1142/S0218348X0300132X
- J. Eidswick. A characterization of the nondifferentiability set of the Cantor function, Proc. Amer. Math. Soc. 42 (1974), 214-217. https://doi.org/10.1090/S0002-9939-1974-0327992-8
- K. J. Falconer, Fractal Geometry, John Wiley and Sons, 1990.
- K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, 1997.
- L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. (2) 67 (2003), no. 1, 103-122. https://doi.org/10.1112/S0024610702003630
- J. Paradis, P. Viader, and L. Bibiloni, Riesz-Nagy singular functions revisited, J. Math. Anal. Appl. 329 (2007), no. 1, 592-602. https://doi.org/10.1016/j.jmaa.2006.06.082
- X. Saint Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 1, 133-145. https://doi.org/10.1017/S0305004100064690
- Y. Yao, Y. Zhang, and W. Li, Dimensions of non-differentiability points of Cantor functions, Studia Math. 195 (2009), no. 2, 113-125. https://doi.org/10.4064/sm195-2-2