• Title/Summary/Keyword: non-differentiability

Search Result 10, Processing Time 0.021 seconds

DERIVATIVE OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.261-275
    • /
    • 2011
  • We give characterizations of the differentiability points and the non-differentiability points of the Riesz-N$\'{a}$gy-Tak$\'{a}$cs(RNT) singulr function using the distribution sets in the unit interval. Using characterizations, we show that the Hausdorff dimension of the non-differentiability points of the RNT singular function is greater than 0 and the packing dimension of the infinite derivative points of the RNT singular function is less than 1. Further the RNT singular function is nowhere differentiable in the sense of topological magnitude, which leads to that the packing dimension of the non-differentiability points of the RNT singular function is 1. Finally we show that our characterizations generalize a recent result from the ($\tau$, $\tau$ - 1)-expansion associated with the RNT singular function adding a new result for a sufficient condition for the non-differentiability points.

DIFFERENTIABILITY AND NON-DIFFERENTIABILITY POINTS OF THE MINKOWSKI QUESTION MARK FUNCTION

  • Baek, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.811-817
    • /
    • 2016
  • Using the periodic continued fraction, we give concrete examples of the points at which the derivatives of the Minkowski question mark function does not exist. We also give examples of the differentiability points which show that recent apparently independent results are consistent and closely related.

SUFFICIENT CONDITION FOR THE DIFFERENTIABILITY OF THE RIESZ-NÁGY-TAKÁCS SINGULAR FUNCTION

  • Baek, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1173-1183
    • /
    • 2017
  • We give some sufficient conditions for the null and infinite derivatives of the $Riesz-N{\acute{a}}gy-Tak{\acute{a}}cs$ (RNT) singular function. Using these conditions, we show that the Hausdorff dimension of the set of the infinite derivative points of the RNT singular function coincides with its packing dimension which is positive and less than 1 while the Hausdorff dimension of the non-differentiability set of the RNT singular function does not coincide with its packing dimension 1.

SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.7-21
    • /
    • 2015
  • We give the characterization of H$\ddot{o}$lder differentiability points and non-differentiability points of the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) singular function ${\Psi}_{a,p}$ satisfying ${\Psi}_{a,p}(a)=p$. It generalizes recent multifractal and metric number theoretical results associated with the RNT function. Besides, we classify the singular functions using the singularity order deduced from the H$\ddot{o}$lder derivative giving the information that a strictly increasing smooth function having a positive derivative Lebesgue almost everywhere has the singularity order 1 and the RNT function ${\Psi}_{a,p}$ has the singularity order $g(a,p)=\frac{a{\log}p+(1-a){\log}(1-p)}{a{\log}a+(1-a){\log}(1-a)}{\geq}1$.

GENERALIZED SEMI-CONVEXITY FOR NON-DIFFERENTIABLE PLANAR SHAPES

  • Choi, Sung-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.37-41
    • /
    • 2007
  • The semi-convexity for planar shapes has been recently introduced in [2]. As a generalization of the convextiy, semi-convexity is closed under the Minkowski sum. But the definition of semi-convexity requires that the shape boundary should satifisfy a differentiability condition $C^{1:1}$, which means that it should be possible to take the normal vector field along the domain's extended boundary. In view of the fact that the semi-convextiy is a most natural generalization of the convexity in many respects, this is a severe restriction for the semi-convexity, since the convexity requires no such a priori differentiability condition. In this paper, we generalize the semi-convexity to the closure of the class of semi-convex $\mathcal{M}$-domains for any Minkowski class $\mathcal{M}$, and show that this generalized semi-convexity is also closed under Minkowski sum.

  • PDF

Dangerous Border-collision Bifurcation for a Piecewise Smooth Nonlinear System

  • Kang, Hunseok
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.459-472
    • /
    • 2012
  • A piecewise smooth system is characterized by non-differentiability on a curve in the phase space. In this paper, we discuss particular bifurcation phenomena in the dynamics of a piecewise smooth system. We consider a two-dimensional piecewise smooth system which is composed of a linear map and a nonlinear map, and analyze the stability of the system to determine the existence of dangerous border-collision bifurcation. We finally present some numerical examples of the bifurcation phenomena in the system.

A Solution of Variational Inequalities and A Priori Error Estimations in Contact Problems with Finite Element Method (접촉문제에서의 변분부등식의 유한요소해석과 A Priori 오차계산법)

  • Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2887-2893
    • /
    • 1996
  • Governing equations infrictional contact problems are introduced using variational inequality formulations which are regularized to overcome the diffculties of non-differentiability of the friction functional. Also finite element approximations and a priori error estimations are derived based on those formulations. Numerical simulations are performed illustrating the theoretical results.

DIFFERENTIABILITY OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • JO KYEONGHEE
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.485-498
    • /
    • 2005
  • In this article we show that every quasi-homogeneous convex affine domain whose boundary is everywhere differentiable except possibly at a finite number of points is either homogeneous or covers a compact affine manifold. Actually we show that such a domain must be a non-elliptic strictly convex cone if it is not homogeneous.

Automatic Pronunciation Diagnosis System of Korean Students' English Using Purification Algorithm (정제 알고리즘을 이용한 한국인 화자의 영어 발화 자동 진단 시스템)

  • Yang, Il-Ho;Kim, Min-Seok;Yu, Ha-Jin;Han, Hye-Seung;Lee, Joo-Kyeong
    • Phonetics and Speech Sciences
    • /
    • v.2 no.2
    • /
    • pp.69-75
    • /
    • 2010
  • We propose an automatic pronunciation diagnosis system to evaluate the pronunciation of a foreign language without the uttered text. We recorded English utterances spoken by native and Korean speakers, and utterances spoken by Koreans are evaluated by native speakers based on three criteria: fluency, accuracy of phones and intonation. The system evaluates the utterances of test Korean speakers based on the differences of log-likelihood given two models: one is trained by English speech uttered by native speakers, and the other is trained by English speech uttered by Korean speakers. We also applied purification algorithm to increase class differentiability. The purification can detect and eliminate the non-speech frames such as short pauses, occlusive silences that do not help to discriminate between utterances. As the results, our proposed system has higher correlation with the human scores than the baseline system.

  • PDF

Modification of boundary bias in nonparametric regression (비모수적 회귀선추정의 바운더리 편의 수정)

  • 차경준
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.329-339
    • /
    • 1993
  • Kernel regression is a nonparametric regression technique which requires only differentiability of the true function. If one wants to use the kernel regression technique to produce smooth estimates of a curve over a finite interval, one can realize that there exist distinct boundary problems that detract from the global performance of the estimator. This paper develops a kernel to handle boundary problem. In order to develop the boundary kernel, a generalized jacknife method by Gray and Schucany (1972) is adapted. Also, it will be shown that the boundary kernel has the same order of convergence rate as non-boundary.

  • PDF