DOI QR코드

DOI QR Code

Environmental Fate and Effect of ZnO Nanoparticles

산화아연 나노입자의 환경 거동 및 영향 연구

  • Ha, Ji Yeon (Department of Human and Environmental Toxicology, University of Science and Technology) ;
  • Jang, Min Hee (Future Environmental Research Center, Korea Institute of Toxicology) ;
  • Hwang, Yu Sik (Department of Human and Environmental Toxicology, University of Science and Technology)
  • 하지연 (과학기술연합대학원대학교 인체 및 환경 독성학) ;
  • 장민희 (안전성평가연구소 미래환경연구센터) ;
  • 황유식 (과학기술연합대학원대학교 인체 및 환경 독성학)
  • Received : 2017.06.29
  • Accepted : 2017.07.14
  • Published : 2017.07.31

Abstract

ZnO nanoparticles (ZnO NPs) are mainly used in semiconductors, solar cells, biosensors, and cosmetics (sunscreen). In this study, we investigated the behavior of ZnO NPs in aquatic and soil environments and their effects on plants (Artemisia annua L.) in hydroponic cultivation. It was confirmed that the ZnO NPs size increased and their dissolution decreased with increasing in pH. Leaching distance of ZnO NPs was less than 2.5 cm, indicating that ZnO NPs had a little potential to leach into deeper soil layers. When ZnO NPs were exposed to plant, the total weights of plants decreased. The effects on the length of root and shoot were not observed. In addition large amount of ZnO NPs were adsorbed on the surface of plant root and didn't translocate into shoot. These results suggest that ZnO NPs block the pores of the root cell wall and decrease the bioavailability of plant nutrients. Therefore it can be speculated that the particles increase in size and settle down in the water environment and may adversely affect the plant growth by firmly adhering to the root surface when the ZnO NPs are exposed to the environment.

산화아연 나노입자(ZnO nanoparticles, ZnO NPs)는 반도체, 태양전지, 바이오센서 및 화장품 (자외선 차단제) 등에 주로 쓰이며 해마다 사용량이 증가하여 환경에 노출될 가능성이 높아졌다. 이에 본 연구에서는 수환경과 토양환경 내 산화아연 나노입자의 거동 및 수경재배 방식으로 식물에 미치는 영향을 평가하였다. 수환경 조건 pH 7 이상 (pH =7-10)에서는 산화아연 나노입자의 입자크기가 증가하였고, 용해된 아연이 감소하는 것을 확인하였다. 또한 산화아연 나노입자는 토양 내에서 2.5cm 까지 이동하여, 하부로의 이동이 매우 미비함을 확인하였다. 한편, 산화아연 나노입자를 식물에 노출시킬 경우 총무게가 감소하였고, 뿌리 및 줄기의 길이에는 영향을 주지 않았다. 또한 뿌리 표면에 흡착하거나 세포내로 이동한 산화아연 나노입자를 관찰할 수 있었으며, 줄기로의 이동은 미비함을 확인하였다. 이러한 결과는 식물의 뿌리 및 줄기로 이동하여 세포벽을 파괴하는 아연 이온과는 달리, 산화아연 나노입자는 식물 뿌리에 흡착하여 체내로 영양분이 공급되는 것을 방해함으로써 식물 성장에 영향을 주는 것을 의미한다. 따라서 산화아연 나노입자가 환경 중에 노출될 경우 수환경에서는 입자크기가 증가하여 침전 현상이 일어나고, 식물 뿌리에 흡착하여 식물 성장에 영향을 미치는 것으로 판단된다.

Keywords

Acknowledgement

Grant : 제조나노물질 환경위해성 평가기술 구축

Supported by : 안전성평가연구소

References

  1. NIER-SP2015-340, "Research on the discharge characteristics and their proper management plan for nano-waste(I)," National Institute of Environmental Research(2015).
  2. Kim, E. J., "Risk Assessment of Nanomaterials: Issues and Perspectives," Seoul Nat. Univ., 49 (2010).
  3. Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr., M. F., Rejeski, D. and Hull, M. S., "Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory," Beilstein J. Nanotechnol., 6, 1769-1780(2015). https://doi.org/10.3762/bjnano.6.181
  4. Sakallioglu, T., Bakirdoven, M., Temizel, I., Demirel, B., Copty, N. K., Onay, T. T., Uyguner Demirel, C. S. and Karanfil, T., "Leaching of nano-ZnO in municipal solid waste," J. Hazard. Mater., 317, 319-326(2016). https://doi.org/10.1016/j.jhazmat.2016.05.094
  5. Voegelin, A., Pfister, S., Scheinost, A. C., Marcus, M. A. and Kretzschmar, R., "Changes in Zinc Specipitation in Field Soil after Contamination with Zinc Oxide," Environ. Sci. Technol., 39, 6616-6623(2005). https://doi.org/10.1021/es047962g
  6. Zhou, D. and Keller, A. A., "Role of morphology in the aggregation kinetics of ZnO nanoparticles," Water Res., 44, 2948-2956(2010). https://doi.org/10.1016/j.watres.2010.02.025
  7. Mudunkotuwa, I. A., Rupasinghe, T., Wu, C. M. and Grassian, V. H., "Dissolution of ZnO Nanoparticles at Circumneutral pH: A Study of Size Effects in the Presence and Absence of Citric Acid," Langmuir., 28, 396-403(2010).
  8. Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T. and Grassian, V. H., "Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid," Langmuir., 27, 6059-6068(2011). https://doi.org/10.1021/la200570n
  9. Tourinho, P. S., Gestel, C. A. M. V., Lofts, S., Svendsen, C., Soares, A. M. V. M. and Loureiro, S., "Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertbrates," Environ. Toxicol. and Chem., 31(8), 1679-1692(2012). https://doi.org/10.1002/etc.1880
  10. Lin, D. and Xing, B., "Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth," Environ. Pollut., 150, 243-250(2007). https://doi.org/10.1016/j.envpol.2007.01.016
  11. Sohng, Y., Nam, Y. N. and Lee, I. S., "Phytotoxicity and Bioavailability of Zinc, Zinc Oxide Nanoparticles to the Cucumis sativus," J. Korean Soc. Environ. Eng., 31(7), 467-472(2009).
  12. Yanga, X., Feng, Y., Hea, Z. and Stoffella, P. J., "Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation," J. Trace Elements in Medicine and Biol., 18, 339-353(2005). https://doi.org/10.1016/j.jtemb.2005.02.007
  13. Verbruggen, N., Hermans, C. and Schat, H., "Molecular mechanisms of metal hyperaccumulation in plants," New Phytologist, 181, 759-776(2009). https://doi.org/10.1111/j.1469-8137.2008.02748.x
  14. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. and Lux, A., "Zinc in plants," New Phytologist, 173, 677-702(2007). https://doi.org/10.1111/j.1469-8137.2007.01996.x
  15. McGrath, S. P., Lombi, E., Gray, C. W. Caille, N., Dunham, S. J. and Zhao, F. J., "Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri," Environ. Pollut., 141, 115-125(2006). https://doi.org/10.1016/j.envpol.2005.08.022
  16. Ministry of Environment, "Eco-friendly and Long-term Phytoremediation of Heavy Metal Contaminated Soil Using Indigenous Plants," (2007).
  17. Choi, Y. J. and Lee J. S., "Heavy Metal Accumulation in Wild Plants on the Roadside of Industrial Areas," J. Korean Environ. Res. & Reveg. Tech., 8(5), 39-46(2005).
  18. Park, S. H., Choi, S. I., Park, J. B., Han, H. K., Bae, S. D., Song, I. J. and Park, E. R., "Phytoremediation on the Heavy Metal Contaminated Soil by Hyperaccumulators in the Greenhouse," J. Soil & Groundwater Environ., 16(5), 1-8(2011). https://doi.org/10.7857/JSGE.2011.16.5.001
  19. Han, S. M., Kang, S. W., Kim, H. J. and Kim D. H., "A Study on the Characters of Heavy Metals of Soils and plants in the Abandoned Mines and the Landfills of Busan," Health & Environ., 22(1), 201-215(2012).
  20. OECD Guidelines for the testing of chemicals 312, "Leaching in soil columns," (2004).
  21. Wang, Z., Xu, L., Zhao, J., Wang, X., White, J. C. and Xing, B., "CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression," Environ. Sci. Technol., 50(11), 6008-6016(2016). https://doi.org/10.1021/acs.est.6b01017
  22. NIER-SP2015-208, "Transformation and toxicity of nanomaterials in the environment," National Institute of Environmental Research(2015).
  23. Degen, A. and Kosec, M., "Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution," J. the European Ceramic Soc., 20, 667-673(2000). https://doi.org/10.1016/S0955-2219(99)00203-4
  24. Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T. and Grassian, V. H., "Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid," Langmuir., 27(10), 6059-6068(2011). https://doi.org/10.1021/la200570n
  25. David, C. A., Galceran, J., Rey-Castro, C., Puy, J., Companys, E., Salvador, J., Monne, J., Wallace, R. and Vakourov, A., "Dissolution Kinetics and Solubility of ZnO Nanoparticles Followed by AGNES," J. Phys. Chem. C, 116, 11758-11767(2012). https://doi.org/10.1021/jp301671b
  26. MOTIE, "Development of Safety Assessment and Certification System for Nano Products," Ministry of Trade, Industry and Energy(2011).
  27. Darlington, T. K., Neigh, A. M., Spencer, M. T., Nguyen, O. T. and Oldenburg, S. J., "Nanoparticle characteristics affecting environmental fate and transport through soil," Environ. Toxicol. and Chem., 28(6), 1191-1199(2009). https://doi.org/10.1897/08-341.1
  28. Lin, D. and Xing, A., "Root Uptake and Phytotoxicity of ZnO Nanoparticles," Environ. Sci. Technol., 42, 5580-5585(2008). https://doi.org/10.1021/es800422x
  29. Zhou, D., Jin, S., Li, L., Wang, Y. and Weng, N., "Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions," J. Environ. Sci., 23(11), 1852-1857(2011). https://doi.org/10.1016/S1001-0742(10)60646-8
  30. Degen, A. and Kosec, M., "Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution," J. European Ceramic Soc., 20, 667-673(2000). https://doi.org/10.1016/S0955-2219(99)00203-4
  31. Franklin, N.M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E. and Casey, P. S., "Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and $ZnCl_2$ to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility," Environ. Sci. Technol., 41, 8484-8490(2007). https://doi.org/10.1021/es071445r