DOI QR코드

DOI QR Code

Photocatalytic Degradation of 3-Nitrophenol with ZnO Nanoparticles under UV Irradiation

  • Li, Jiulong (Department of Chemistry, Sahmyook University) ;
  • Ko, Weon Bae (Department of Chemistry, Sahmyook University)
  • Received : 2017.05.22
  • Accepted : 2017.06.01
  • Published : 2017.06.30

Abstract

Zinc nitrate hexahydrate [$Zn(NO_3){\cdot}6H_2O$] and sodium hydroxide [NaOH] were used as source reagents in the preparation of ZnO nanoparticles in an aqueous solution containing deionized water and ethanol in a ratio of 2:5 (v/v). ZnO nanoparticles were heated in an electric furnace at $700^{\circ}C$ for 2 h under an atmosphere of inert argon gas. The morphological and structural properties of the nanoparticles were characterized by scanning electron microscopy (SEM) and powder X-ray diffractometry (XRD). UV-vis spectrophotometry was used to analyze the photocatalytic degradation of 3-nitrophenol with ZnO nanoparticles as photocatalyst under ultraviolet irradiation at 254 nm. Evaluation of the kinetic of the photo-catalytic degradation of 3-nitrophenol indicated that the degradation of 3-nitrophenol with ZnO nanoparticles obeyed the pseudo-first order reaction rate model.

Keywords

References

  1. D. Mohan, A. Sarswat, V. K. Singh, M. A. Franco, and C. U. Pittman Jr., "Development of magnetic activated carbon from almond shells for trinitrophenol removal from water", Chem. Eng. J., 172, 1111 (2011). https://doi.org/10.1016/j.cej.2011.06.054
  2. B. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, and G. Vasapollo, "Degradation of 4-nitrophenol (4-NP) using Fe-$TiO_2$ as a heterogeneous photo-Fenton catalyst", J. Hazard. Mater., 176, 569 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.066
  3. M. S. Dieckmann and K. A. Gray, "A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in $TiO_2$ slurries", Water Res., 30, 1169 (1996). https://doi.org/10.1016/0043-1354(95)00240-5
  4. S. U. Sonavane, M. B. Gawande, S. S. Deshpande, A. Venkataraman, and R. V. Jayaram, "Chemoselective transfer hydrogenation reactions over nanosized ${\gamma}-Fe_2O_3$ catalyst prepared by novel combustion route", Catal. Commun., 8, 1803 (2007). https://doi.org/10.1016/j.catcom.2007.01.037
  5. A. Santos, P. Yustos, S. Rodriguez, and F. G. Ochoa, "Wet oxi-dation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media", Appl. Catal. B: Environ., 65, 269 (2006). https://doi.org/10.1016/j.apcatb.2006.02.005
  6. G. Nakhla, S. Abuzaid, and S. Farooq, "Activated carbon adsorption of phenolics in oxic systems: Effect of pH and temperature variations", Water Environ. Res., 66, 842 (1994). https://doi.org/10.2175/WER.66.6.12
  7. M. Maeda, A. Itoh, and Y. Kawase, "Kinetics for aerobic biological treatment of o-cresol containing wastewaters in a slurry bioreactor: biodegradation by utilizing waste activated sludge", Biochem. Eng. J., 22, 97 (2005). https://doi.org/10.1016/j.bej.2004.09.005
  8. C. J. Martino and P. E. Savage, "Oxidation and Thermolysis of Methoxy-, Nitro-, and Hydroxy-Substituted Phenols in Supercritical Water", Ind. Eng. Chem. Res., 38, 1784 (1999). https://doi.org/10.1021/ie9805741
  9. V. Maurino, C. Minero, E. Pelizzetti, P. Piccinini, N. Serpone, and H. Hidaka, "The fate of organic nitrogen under photocatalytic conditions: degradation of nitrophenols and aminophenols on irradiated $TiO_2$", J. Photochem. Photobiol. A: Chem., 109, 171 (1997). https://doi.org/10.1016/S1010-6030(97)00124-X
  10. D. A. Kazakov, V. V. Volkhin, K. Kaczmarski, Y. O. Gulenova, M. N. Obirina, and D. A. Rozhina, "Catalytic Ozonation of 4-Nitrophenol in the Presence of Magnetically Separable Titanium Dioxide-Magnetite Composite", Euras. Chem. Technol. J., 17, 309 (2015).
  11. V. Augugliaro, L. Palmisano, M. Schiavello, and A. Sclafani, "Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion", Appl. Catal., 69, 323 (1991). https://doi.org/10.1016/S0166-9834(00)83310-2
  12. N. Daneshvar, M. A. Behnajady, and Y. Z. Asghar, "Photooxidative degradation of 4-nitrophenol (4-NP) in $UV/H_2O_2$ process: Influence of operational parameters and reaction mechanism", J. Hazard. Mater. B, 139, 275 (2007). https://doi.org/10.1016/j.jhazmat.2006.06.045
  13. N. Sobana, K. Selvam, and M. Swaminathan, "Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped $TiO_2$", Sep. Purif. Technol., 62, 648 (2008). https://doi.org/10.1016/j.seppur.2008.03.002
  14. M. Sahiner, H. Ozay, O. Ozay, and N. Aktas, "A soft hydrogel reactor for cobal nanoparticle preparation and use in the reduction of nitrophenols", Appl. Catal. B: Environ., 101, 137 (2010). https://doi.org/10.1016/j.apcatb.2010.09.022
  15. D. M. Dotzauer, J. Dai, L. Sun, and M. L. Bruening, "Catalytic Membranes Prepared Using Layer-by-Layer Adsorption of Polyelectrolyte/Metal Nanoparticle Films in Porous Supports", Nano Lett., 6, 2268 (2006). https://doi.org/10.1021/nl061700q
  16. X. W. Zhang, Y. Y. Qu, W. L. Shen, J. W. Wang, H. J. Li, Z. J. Zhang, S. Z. Li, and J. T. Zhou, "Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols", Colloids Surf. A Physicochem. Eng. Asp., 497, 280 (2016). https://doi.org/10.1016/j.colsurfa.2016.02.033
  17. M. S. Dieckmann and K. A. Gray, "A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in $TiO_2$ slurries", Wat. Res., 30, 1169 (1996). https://doi.org/10.1016/0043-1354(95)00240-5
  18. B. Divband, M. Khatamian, G. R. K. Eslamian, and M. Darbandi, "Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4- nitrophenol degradation", Appl. Surf. Sci., 284, 80 (2013). https://doi.org/10.1016/j.apsusc.2013.07.015
  19. K. M. Parida and S. Parija, "Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide", Sol. Energy, 80, 1048 (2006). https://doi.org/10.1016/j.solener.2005.04.025
  20. D. W. Chen and A. K. Ray, "Photodegradation kinetics of 4- nitrophenol in $TiO_2$ suspension", Wat. Res., 32, 3223 (1998). https://doi.org/10.1016/S0043-1354(98)00118-3
  21. R. S. Parra, I. H. Perez, E. M. Palacios, J. P. P. Orozco, A. Sampieri, D. V. Avella, A. E. J. Gonzalez, and R. G. Tapia, "Photodegradation of Phenol, 2-Chlorophenol and o-Cresol by Iron Oxide Nanoparticles", Nanosci. Nanotechnol. Asia, 1, 31 (2011).
  22. F. Peng, H. J. Wang, H. Yu, and S. H. Chen, "Preparation of aluminum foil-supported nano-sized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation", Mater. Res. Bull., 41, 2123 (2006). https://doi.org/10.1016/j.materresbull.2006.03.029
  23. N. G. Shimpi, S. Jain, N. Karmakar, A. Shah, D. C. Kothari, and S. Mishra, "Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor", Appl. Surf. Sci., 390, 17 (2016). https://doi.org/10.1016/j.apsusc.2016.08.050
  24. S. K. Pardeshi and A. B. Patil, "A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy", Sol. Energy, 82, 700 (2008). https://doi.org/10.1016/j.solener.2008.02.007
  25. C. Q. Zhu, B. Lu, Q. Su, E. Q. Xie, and W. Lan, "A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst", Nanoscale, 4, 3060 (2012). https://doi.org/10.1039/c2nr12010k