DOI QR코드

DOI QR Code

Preparation of ZnO/SiO2 Nano-Composition and Photocatalysts and Antibacterial Activity

ZnO/SiO2 나노 입자의 화학적 합성과 광촉매 및 항균성 특성에 관한 연구

  • Kim, Jae-Uk (Department of Chemistry, Dankook University) ;
  • Yuk, Young-Sam (Department of Biomedical Laboratory Science, Dankook University) ;
  • Kim, Jong-Gyu (Department of Chemistry, Dankook University)
  • 김재욱 (단국대학교 자연과학대학 화학과) ;
  • 육영삼 (단국대학교 보건과학대학 임상병리학과) ;
  • 김종규 (단국대학교 자연과학대학 화학과)
  • Received : 2017.02.01
  • 심사 : 2017.05.24
  • 발행 : 2017.08.20

초록

In this paper, a $ZnO/SiO_2$ nano-composite was prepared by a simple chemical method at room temperature. For the synthesis of ZnO nanoparticles (NPs), a sonochemical method was used, and $SiO_2$ NPs were prepared by precipitation method. The formation of $ZnO/SiO_2$ NCs was characterized by X-ray diffractometer (XRD) and confirmed by field-emission scanning electron microscopy (FE-SEM) and Fourier transform infra-red spectroscopy(FT-IR). The photocatalytic properties of $ZnO/SiO_2$ NCs formed at different concentrations of $SiO_2$ were evaluated by rhodamine-B dye. It was confirmed that increasing $SiO_2$ concentration resulted in an increase in the photocatalytic property. In addition, the antibacterial activity of $ZnO/SiO_2$ NCs was conducted against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the antibacterial activities of E.coli and S. aureus were increased in the presence of thick SiO NPs layer.

본 논문은 $ZnO/SiO_2$를 나노 복합체(nano-compositions : NCs) 크기로 상온에서 화학적 방법으로 합성하였다. ZnO는 초음파 합성법으로 제조를 하였으며, $SiO_2$는 침전 방법을 이용하여 제조 하였다. $ZnO/SiO_2$의 구조적인 특성을 파악하기 위해 X-선회절 분석기(XRD), 주사전자현미경(FE-SEM), 푸리에 변환 적외선 스펙트럼(FT-IR)를 이용하여 $ZnO/SiO_2$가 형성되는 것을 확인 할 수 있었다. 광촉매적 특성을 판단하기 위해 $SiO_2$의 농도별로 제조된 $ZnO/SiO_2$를 Rhodamine-B 시약을 이용하여 광촉매 특성을 평가하였다. 그 결과 $SiO_2$의 농도가 증가할수록 광촉매 특성이 증가하는 것을 확인하였다. 그리고 $ZnO/SiO_2$를 가지고 항균성 실험을 진행하였다. 실험에 사용된 균(cell)은 대장균(E. coli)과 황색포도상구균(S. aureus)이다. 표면의 $SiO_2$층에 따른 항균 성실험을 진행한 결과 $SiO_2$ 층이 증가 할수록 항균 효과가 증가하는 것을 확인 할 수 있다.

키워드

참고문헌

  1. Caglar, M.; llican, S.; Caglar, Y.; Yakuphanoglu, F. Thin Solid Films, 2010, 518, 4491.
  2. Gieraltowska, S.; Wachnicki, L.; Withoswski, B.; Godlewski, M.; Guziewicz, E. Thin Solid Films, 2012, 520, 4694. https://doi.org/10.1016/j.tsf.2011.10.151
  3. Chakrabarti, S.; Ganguli, D.; Chaudhuri, S. Phys. Stat. Sol. (a). 2004, 201, 2134. https://doi.org/10.1002/pssa.200306824
  4. Mikrajuddin, A.; Shinji, S.; Kikuo, O. Opt. Mater. 2004, 26, 95. https://doi.org/10.1016/j.optmat.2004.01.006
  5. Meng, Y.; Lin, Y.; Yang, J. J. Solid State Chem. 2014, 210, 160. https://doi.org/10.1016/j.jssc.2013.11.020
  6. Jia, H.; Zhigang, Y.; Qingdong Z. Energy Environ. Sci. 2011, 4, 3861. https://doi.org/10.1039/c1ee01873f
  7. Ismail, A.A.; El-Midany, A.A.; Abel-Aal, E.A.; El-Shall, H. Mater. Lett. 2005, 17, 174.
  8. Peng, A.A.; Hsieh, T.-E.; Hsu, C.-H. Nanotechnology. 2006, 17, 174. https://doi.org/10.1088/0957-4484/17/1/028
  9. Auffan, M.; Rose, J.; Bottero, J.; Lowry, G.; Jolivet, J.; Wiesner, M. Nat. Nanotechnol. 2009, 4, 634. https://doi.org/10.1038/nnano.2009.242
  10. Shima, F.; Reza, M. Nanotechnology, 2007, 5, 647.
  11. Hong Seong, K.; Jeong Seok, K.; Seong Sik, P.; Eun Sub, S.; Sang Yeol, L. Mater. Sci. Eng. B, 2003, 102, 313. https://doi.org/10.1016/S0921-5107(02)00730-4
  12. Yoichiro, N.; Aki, M.; Hiroko, K.; Tore, A.; Yochinori, H.; Goro, S. Appl. Surf. Sci. 1999, 142, 233. https://doi.org/10.1016/S0169-4332(98)00654-0
  13. Hong, W.; Harry E, R. J. Mater. Sci. Mater. Electron. 2010, 21, 1014. https://doi.org/10.1007/s10854-010-0118-7
  14. Bancha, J.; Yuki, M.; Aswin, H.; Porponth, S.; Makoto, K. Sol. Energy Mater. Sol. Cells. 2013, 119, 209. https://doi.org/10.1016/j.solmat.2013.06.045
  15. Young Rae, J.; Keon-Ho, Y.; Seung Min, P. J. Mater. Sci. Technol. 2010, 26, 973. https://doi.org/10.1016/S1005-0302(10)60158-2
  16. Numan, S.; Sami, H.; Zishan, K.; Adnan, M.; Ameer, A.; Esam, A.; Nabbeel, Z.; Salim, A. Int. J. Nanomedicine, 2011, 6, 863.
  17. Khorsand, Z.; Majid, M.; Wang, H.; Ramin, Y.; A. Moradi, G.; Ren, Z. Ultrasonics Sonochemistry, 2013, 20, 395. https://doi.org/10.1016/j.ultsonch.2012.07.001
  18. Li, Z. H.; Liu, X. R.; Zhang, Y.; Tian, F. F.; Zhao, G. Y.; Yu, Q. L. Y.; Jiang, F. L.; Liu, Y. Toxicological Reviews. 2012, 1, 137.
  19. Xie, Y.; He, Y.; Lrwin, P. L.; Jin, T.; Shi, X. Appl. Environ. Microbiol. 2011, 77, 2325. https://doi.org/10.1128/AEM.02149-10
  20. Ma, H.; Williams, P. L.; Diamond, S. A. Environ. Pollu. 2013, 172, 76. https://doi.org/10.1016/j.envpol.2012.08.011
  21. Zhaoyi, S.; Zhuo, C.; Zhen, H.; Tingting, L.; Xiaoxia, L. Environ. Sci. Eng. 2015, 9, 912.
  22. Bisht, G.; Rayamajhi, S. Nanobiomedicine. 2016, 9, 1.
  23. Hossein, B. Appl. Surf. Sci. 2014, 320, 429. https://doi.org/10.1016/j.apsusc.2014.09.102
  24. Jian-Hui, S.; Shu-Ying, D.; Yong-Kui W.; Sheng-Peng, S. J. Hazard. Mater. 2009, 172, 1520. https://doi.org/10.1016/j.jhazmat.2009.08.022
  25. Jinfeng, W.; Takuya, T.; Lu, S.; Xungai, W. J. Am. Ceram. Soc. 2009, 92, 2083. https://doi.org/10.1111/j.1551-2916.2009.03142.x
  26. Min-Seon, K.; Jae-Uk, K.; Jeong-Yeol, Y.; Jong-Gyu, K. J. Korean Chem. Soc. 2016, 60, 34. https://doi.org/10.5012/jkcs.2016.60.1.34
  27. Shao-Wei, B.; Imall, A.M.; Thilini, R.; Vichi, H. G. Langmuir, 2011, 27, 6059. https://doi.org/10.1021/la200570n
  28. Marczak, R.; Segets, D.; Voigt, M.; Peukert, W. Adv. Powder Technol. 2010, 21, 41. https://doi.org/10.1016/j.apt.2009.10.005
  29. Oba, F.; Choi, M.; Togo, A.; Tanaka, I. Sci. Technol. Adv. Mater. 2011, 12, 34302. https://doi.org/10.1088/1468-6996/12/3/034302
  30. Zakirov, M. I.; Kuryliuk, V. V.; Korotchenkov, O. A. J. Phy.: Conf. Ser. 2016, 741, 012028. https://doi.org/10.1088/1742-6596/741/1/012028
  31. Zhang,Y.; Jounal. of Nanomaterials. 2012, 2012, 20.
  32. Ruzaina, R.; Bachiru, K. S.; Azlan, A. A. Ultrasonics Sonochemistry. 2017. 35, 270. https://doi.org/10.1016/j.ultsonch.2016.10.002
  33. Jung, K. Y.; Park, S. B. J. Photochem and Photobio. 1999, 127, 117. https://doi.org/10.1016/S1010-6030(99)00132-X
  34. Viswanath, R. N.; Ramassamy, S. Colloids and Surf. A. 1998, 133, 49. https://doi.org/10.1016/S0927-7757(97)00111-8
  35. Jung, K. Y.; Park, S. B. Appl. Catal. B: Environ. 2000, 25, 249.
  36. Tanaka, Y.; Suganuma, M. J. Sol-Gel Sci. Technol. 2001, 22, 83. https://doi.org/10.1023/A:1011268421046
  37. Jung, K. Y.; Park, S. B. Korean. J. Chem. Eng. 2001, 18, 879. https://doi.org/10.1007/BF02705612
  38. Grieken, R. V.; Aguado, J.; Lopez, M. J. J. Photochem. Photobio. A. 2001, 6010, 1.
  39. Amna, S.; Shahrom, M.; Azman, S.; Kaus, N. H. M.; Ling, C. A.; Siti, K. M. B.; Habsah, H.; Dasmawati, M. Nano-Micro Letter. 2015, 3, 219.
  40. Sowri Babu, K.; Ramachandra Reddy, A.; Sujatha, C. J Adv Ceram. 2013, 2, 260. https://doi.org/10.1007/s40145-013-0069-6
  41. Lisovskyy, I. P.; Litovcheno, V. G.; Mazunov, D. O.; Kaschieva, S.; Koprinarova, J.; Dmitriev, S. N. J. Optoelectron. Adv. M. 2005, 7, 325.
  42. Music, S.; Filipovic-Vincekovic, N.; Sekovanic, L. Braz. J. Chem. Eng. 2011, 28, 89. https://doi.org/10.1590/S0104-66322011000100011