DOI QR코드

DOI QR Code

Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods

  • Xu, Weiwei (College of Science, Henan Institute of Engineering) ;
  • Niu, Jinzhong (College of Science, Henan Institute of Engineering) ;
  • Zheng, Shuang (College of Science, Henan Institute of Engineering) ;
  • Tian, Guimin (College of Science, Henan Institute of Engineering) ;
  • Wu, Xinghui (College of Science, Henan Institute of Engineering) ;
  • Cheng, Yongguang (College of Science, Henan Institute of Engineering) ;
  • Hu, Xiaoyang (College of Science, Henan Institute of Engineering) ;
  • Liu, Shuaishuai (College of Science, Henan Institute of Engineering) ;
  • Hao, Haoshan (College of Science, Henan Institute of Engineering)
  • Received : 2017.03.23
  • Accepted : 2017.06.05
  • Published : 2017.08.20

Abstract

One-dimensional CdTe nanorods (NRs) are obtained by the reaction of various Cd precursors with single crystalline Te nanorod templates, which are pre-synthesized from Te precursors by a simple and reproducible solvothermal method. Throughout the process, the diffraction intensity of different crystal facets of single crystalline Te NRs varied with reaction times. Finally, by alloying Cd ions along the axial direction of Te NRs, polycrystalline cubic phase CdTe NRs with diameters of 80-150 nm and length up to $1.2-2.4{\mu}m$ are obtained. The nucleation and growth processes of Te and CdTe NRs are discussed in details, and their properties are characterized by XRD, SEM, TEM, Raman scattering, and UV-vis absorption spectra. It was found that the key elements of synthesizing CdTe NRs such as reaction temperatures and Cd sources will strongly influence the final shape of CdTe NRs.

Keywords

References

  1. Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66. https://doi.org/10.1038/35051047
  2. Manzoor, U.; Kim, D. K. Scripta Mater. 2006, 54, 807. https://doi.org/10.1016/j.scriptamat.2005.11.012
  3. Utama, M. I.; Zhang, J.; Chen, R.; Xu, X.; Li, D.; Sun, H.; Xiong, Q. Nanoscale 2012, 4, 1422. https://doi.org/10.1039/c1nr11612f
  4. Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462. https://doi.org/10.1126/science.1117908
  5. Yang, J.; Gao, Y.; Kim, J. W.; He, Y.; Song, R.; Ahn, C. W.; Tang, Z. Phys. Chem. Chem. Phys. 2010, 12, 11900. https://doi.org/10.1039/c0cp00079e
  6. You, H.S.; Choi K. S.; Bae P. K.; Kim, K. N.; Jang, H. G.; Kim Y.; Kim C. H. Bull. Korean Chem. Soc. 2009, 30, 3137. https://doi.org/10.5012/bkcs.2009.30.12.3137
  7. Lin, Z. H.; Yang, Z.; Chang, H. T. Cryst. Growth Des. 2008, 8, 351. https://doi.org/10.1021/cg070357f
  8. Gautam, U. K.; Rao, C. N. R. J. Mater. Chem. 2004, 14, 2530. https://doi.org/10.1039/b405006a
  9. Xi, G.; Liu, Y.; Wang, X.; Liu, X.; Yiya Peng, A.; Qian, Y. Crys. Growth Des. 2006, 6, 2567. https://doi.org/10.1021/cg0603218
  10. Wu, X. P.; Yuan, L.; Zhou, S. M.; Lou, S. Y.; Wang, Y. Q.; Gao, T.; Liu, Y. B.; Shi, X. J. J. Nanopart. Res. 2012, 14, 721. https://doi.org/10.1007/s11051-012-0721-z
  11. Wu, X.; Wang, Y.; Zhou, S.; Gao, T.; Wang, K.; Lou, S.; Liu, Y.; Shi, X. Cryst. Growth Des. 2012, 13, 136.
  12. Narayanan, R.; Sarkar, D.; Som, A.; Wleklinski, M. S.; Cooks, R. G.; Pradeep, T. Anal. Chem. 2015, 87, 10792. https://doi.org/10.1021/acs.analchem.5b01596
  13. Dong, G. H.; Zhu, Y. J.; Cheng, G. F.; Ruan, Y. J. Mater. Lett. 2012, 76, 69. https://doi.org/10.1016/j.matlet.2012.02.077
  14. Zhou, C.; Dun, C.; Wang, Q.; Wang, K.; Shi, Z.; Carroll, D. L.; Liu, G.; Qiao, G. ACS Appl. Mat. Interfaces 2015, 7, 21015. https://doi.org/10.1021/acsami.5b07144
  15. Bhatt, R.; Krishnan, G.; Bhattacharya, S.; Bohra, A.; Bhatt, P.; Basu, R.; Singh, A.; Aswal, D. K.; Gupta, S. K. Aip Conference Proceedings 2016, 1731, 4261.
  16. Ananthakumar, S.; Ramkumar, J.; Babu, S. M. Mater. Sci. in Semicond. Process. 2014, 27, 12. https://doi.org/10.1016/j.mssp.2014.06.008
  17. Kim, S. H.; Kim, J. J.; Suh, S. W.; Park, B. K.; Lee, J. B. J. Ind. Eng. Chem. 2010, 16, 741. https://doi.org/10.1016/j.jiec.2010.07.009
  18. Shen, H.; Wang, H.; Chen, X.; Niu, J. Z.; Xu, W.; Li, X. M.; Jiang, X. D.; Du, Z.; Li, L. S. Chem. Mater. 2010, 22, 4756. https://doi.org/10.1021/cm1013009
  19. Hwang, C. H.; Park, J.; Song, M.; Lee, J.; Shim, I. Bull. Korean Chem. Soc. 2011, 32, 2207. https://doi.org/10.5012/bkcs.2011.32.7.2207
  20. Hou, T. C.; Yang, Y.; Lin, Z. H.; Ding, Y.; Chan, P.; Pradel, K. C.; Chen, L. J.; Wang, Z. L. Nano Energy 2013, 2, 387. https://doi.org/10.1016/j.nanoen.2012.11.004
  21. Zheng, R.; Guo, S.; Dong, S. Inorg. Chem. 2007, 46, 6920. https://doi.org/10.1021/ic700502v
  22. Yong, S. M.; Muralidharan, P.; Jo, S. H.; Kim, D. K. Mater. Lett. 2010, 64, 1551. https://doi.org/10.1016/j.matlet.2010.04.045
  23. Zhang, L.; Yang, H.; Yu, J.; Shao, F.; Li, L.; Zhang, F.; Zhao, H. J. Phys. Chem. C 2009, 113, 5434. https://doi.org/10.1021/jp810385v
  24. Wang, J.; Wang, X.; Peng, Q.; Li, Y. Inorg. Chem. 2004, 43, 7552. https://doi.org/10.1021/ic049129q
  25. Sun Y.; Yin Y.; Mayers B. T.; Herricks T.; Xia Y. Chem. Mater. 2002, 14, 4736. https://doi.org/10.1021/cm020587b
  26. Mayers, B.; Xia, Y. J. Mater. Chem. 2002, 12, 1875. https://doi.org/10.1039/b201058e
  27. Mayers, B.; Xia, Y. Adv. Mater. 2002, 14, 279. https://doi.org/10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2
  28. Wei, G.; Deng, Y.; Lin, Y. H.; Nan, C. W. Chem. Phy. Lett. 2003, 372, 590. https://doi.org/10.1016/S0009-2614(03)00463-9
  29. Lu, Q.; Gao, F.; Komarneni, S. Adv. Mater. 2004, 16, 1629. https://doi.org/10.1002/adma.200400319
  30. Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L. Angew. Chem. Int. Ed. 2004, 43, 1410. https://doi.org/10.1002/anie.200353101
  31. Yan, C.; Raghavan, C. M.; Kang, D. J. Mater. Lett. 2014, 116, 341. https://doi.org/10.1016/j.matlet.2013.11.037
  32. Mak, J. S. W.; Farah, A. A.; Chen, F.; Helmy, A. S. Acs Nano 2011, 5, 3823. https://doi.org/10.1021/nn200157z
  33. Ma, L.; Wei, Z.; Zhang, F.; Wu, X. Superlattices Microstruct. 2015, 88, 536. https://doi.org/10.1016/j.spmi.2015.10.014