DOI QR코드

DOI QR Code

One Pot Four-Component Synthesis of Novel Substituted 2-Phenyl-4(3H) Quinazolinones Using Recyclable Nanocrystalline CuMnO3 Catalyst

  • Borhade, A.V. (Department of Chemistry, Research Centre, HPT Arts and RYK Science College) ;
  • Tope, D.R. (Department of Chemistry, Research Centre, HPT Arts and RYK Science College) ;
  • Gare, G D. (Department of Chemistry, Research Centre, HPT Arts and RYK Science College) ;
  • Dabhade, G.B. (Department of Chemistry, Research Centre, HPT Arts and RYK Science College)
  • Received : 2017.04.29
  • Accepted : 2017.06.19
  • Published : 2017.08.20

Abstract

In the present study, nanocrystalline mixed metal oxide, $CuMnO_3$ catalyst have been synthesized by mechanochemical method with green chemistry approach. The synthesized catalyst was characterized by analytical techniques including FTIR, XRD, SEM, TEM and BET surface area. The synthesized catalyst shows high surface area is $121.06m^2/g$ with particle size 18 nm. The one pot four component synthesis of substituted 2-phenyl-4(3H) quinazolinone from the reaction of anthranilic acid, benzoyl chloride, hydrazine hydrate and substituted benzaldehyde in presence of $CuMnO_3$ nanocatalyst has been carried out. It affords the corresponding products with high yield (76-95%) in very short reaction time. All the obtained products were characterized with $^1HNMR$, $^{13}CNMR$, FTIR and EIMS.

Keywords

References

  1. Gude, V.; Narayanan, R. J. Phys. Chem. 2010, 114, 6356. https://doi.org/10.1021/jp101678z
  2. Khadlikar, B. M.; Borkar, S. D. J. Chem. Technol. Biotechnol. 1998, 71, 209. https://doi.org/10.1002/(SICI)1097-4660(199803)71:3<209::AID-JCTB786>3.0.CO;2-Z
  3. Gladysz, J. A.; Chem. Rev. 2002, 102, 3215. https://doi.org/10.1021/cr020068s
  4. Beach, E. S.; Cui, Z.; Anastas, P. T. Energy Environ Sci. 2009, 2, 1038. https://doi.org/10.1039/b904997p
  5. Voorhoeve, R. J. H.; Johnson, D. W.; Remeika, J. P. Gallagher, P. K. Science 1977, 195, 827. https://doi.org/10.1126/science.195.4281.827
  6. Borhade, A. V.; Kanade, K. G.; Tope, D. R.; Patil, M. D. Res. Chem. Int. 2012, 38, 1931. https://doi.org/10.1007/s11164-012-0515-z
  7. Borhade, A. V.; Patil, D. R.; Tope, D. R. Res. Chem. Int. 2012, 39, 1373.
  8. Gawande, M. B.; Pandey, R. K.; Jayaram, R. V. Catal. Sci. Tech. 2012, 2, 1113. https://doi.org/10.1039/c2cy00490a
  9. Shi, J.; Guo, L. Prog. Nat. Sci. 2012, 22, 592. https://doi.org/10.1016/j.pnsc.2012.12.002
  10. Voorhoeve, R. J. H.; Johnson, D. W. J.; Freeland, P. E.; Mathaias, B. T. Science 1972, 177, 353. https://doi.org/10.1126/science.177.4046.353
  11. Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2001, 101, 1981. https://doi.org/10.1021/cr980129f
  12. Zhu, J.; Thomos, A. Catal. B. 2009, 92, 225. https://doi.org/10.1016/j.apcatb.2009.08.008
  13. Cristiani, C.; Dotelli, G.; Mariani, M.; Pelosato, R.; Zampori, L. Chem. Pap. 2013, 67, 526.
  14. Cao, S. L.; Feng, Y. P.; Jiang, Y. Y.; Liu, S. Y.; Ding, G. Y.; Li, R. T. Bioorg. Med. Chem. Lett. 2005, 15, 1915. https://doi.org/10.1016/j.bmcl.2005.01.083
  15. Kenichi, O.; Yoshihisa, Y.; Toyonari, O.; Toru, I.; Yoshio, I. J. Med. Chem. 1985, 28, 568. https://doi.org/10.1021/jm50001a006
  16. Wolfe, J. F.; Rathman, T. L.; Sleevi, M. C.; Campbell, J. A.; Greenwood, T. D. J. Med. Chem. 1990, 33, 161. https://doi.org/10.1021/jm00163a027
  17. Kurogi, Y.; Inoue, Y.; Tsutsumi, K.; Nakamura, S.; Nagao, K.; Yohsitsugu, H.; Tsuda, Y. J. Med. Chem. 1996, 39, 1433. https://doi.org/10.1021/jm9506938
  18. Kunes, J.; Bazant, J.; Pour, M.; Waisser, K.; Slosarek, M.; Janota, J. Farmaco 2000, 55, 725. https://doi.org/10.1016/S0014-827X(00)00100-2
  19. Connolly, B. J.; Guiry, P. J. Synlett. 2001, 11, 1707.
  20. Abdel-Jalil, R. J.; Voelter, W.; Saeed, M. Tetrahedron Lett. 2004, 45, 3475. https://doi.org/10.1016/j.tetlet.2004.03.003
  21. Liu, J. F.; Lee, J.; Dalton, A. M.; Bi, G.; Yu, L.; Baldino, C. M.; McElory, E.; Brown, M. Tetrahedron Lett. 2005, 46, 1241. https://doi.org/10.1016/j.tetlet.2005.01.008
  22. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Baghbanzadeh,M. Tetrahedron Lett. 2005, 46, 7051. https://doi.org/10.1016/j.tetlet.2005.08.043
  23. Zhou J., Fu, L.; Lv, M.; Liu, J.; Pei, D.; Ding, K. Synth. 2008, 24, 3974.
  24. Giri, R.; Lam, J. K.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 686. https://doi.org/10.1021/ja9077705
  25. Snider Band, P.; Zeng, H. Heterocycles 2003, 61, 173. https://doi.org/10.3987/COM-03-S12
  26. Choudhury, A.; Ali, S.; Khan A. T. J. Korean Chem. Soc. 2015, 15, 280.
  27. Ganguli, S.; Panigrahi, M. K.; Singh, P.; Shukla, P. K. Int J. Pharm. Pharm. Sci. 2012, 4, 434.
  28. Dhingra, A.; Chopra, B.; Dass, R.; Mittal, S. K. Der Pharma Chem. 2012, 7, 10.