DOI QR코드

DOI QR Code

Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP)

방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출

  • 이희재 (가톨릭대학교 디지털미디어학과) ;
  • 김하영 (가톨릭대학교 디지털문화학부) ;
  • 이다빛 (가톨릭대학교 디지털미디어학과) ;
  • 이상국 (가톨릭대학교 미디어기술콘텐츠학과)
  • Received : 2017.03.02
  • Accepted : 2017.04.20
  • Published : 2017.07.15

Abstract

Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.

LBP기반 특징점 기술자를 이용한 얼굴검출은 얼굴의 형태정보 및 눈, 코, 입과 같은 얼굴 요소들 간 공간정보를 표현할 수 없는 문제가 있다. 이러한 문제를 해결하기 위해 선행 연구들은 얼굴 영상을 다수개의 사각형 부분영역들로 분할하였다. 하지만, 연구마다 서로 다른 개수와 크기로 부분 영역을 분할하였기 때문에 실험에 사용하는 데이터베이스에 적합한 부분 영역의 분할 기준이 모호하며, 부분 영역의 수에 비례하여 LBP 히스토그램 차원이 증가되고, 부분 영역의 개수가 증가함에 따라 얼굴의 방향 회전에 대한 민감도가 크게 증가한다. 본 논문은 LBP기반 특징점 기술자의 방향 회전 문제와 특징점 차원의 수 문제를 해결할 수 있는 새로운 부분 영역 분할 방법을 제안한다. 실험 결과, 제안하는 방법은 방향 회전된 단일 얼굴 영상에서 99.0278%의 검출 정확도를 보였다.

Keywords

References

  1. T. Ojala, M. Pietika,inen and D. Harwood, "A Comparative Study of Texture Measures with Classification Based on Feature Distributions," Pattern Recognition, Vol. 29, pp. 51-59, 1996. https://doi.org/10.1016/0031-3203(95)00067-4
  2. T. Ahonen, A. Hadid and M. Pietika,inen, "Face Recognition with Local Binary Patterns," Proc. Eighth European Conf. Computer Vision, pp. 469-481, 2004.
  3. A. Hadid, M. Pietika,inen and T. Ahonen, "A Discriminative Feature Space for Detecting and Recognizing Faces," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, Vol. 2, pp. 797-804, 2004.
  4. C. Shan, S. Gong, P.W. McOwan, "Robust Facial Expression Recognition Using Local Binary Patterns," Proc. IEEE Int'l Conf. Image Processing, pp. 914-917, 2005.
  5. G. Zhao, M. Pietikinen, "Dynamic texture recognition using local binary patterns with an application to facial expressions," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 27, No. 6, pp. 915-928, Jun. 2007.
  6. E. T. Pereira, H. M. Gomes, and J. M. Carvalho, "Integral local binary patterns: A novel approach suitable for texture-based object detection tasks," IEEE International Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 201-208, 2010.
  7. Yang B and Chen S, "A comparative study on local binary pattern (LBP) based face recognition LBP histogram versus LBP image," Neurocomputing, pp. 365-379, 2013.
  8. L. Ding and A.M. Martinez, "Precise Detailed Detection of Faces and Facial Features," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2008.
  9. Anthony Erian and Melvin A. Shiffman, "Advanced Surgical Facial Rejuvenation," Art and Clinical Practice, ISBN: 978-3-642-17837-5, 2012.
  10. Z. Wang, A. C. Bovik, H. R. Sheikh, and E, P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Trans. Image Processing, Vol. 13, No. 4, pp. 600-612, Apr. 2004. https://doi.org/10.1109/TIP.2003.819861
  11. A.M. Martinez and R. Benavente, "The AR-face database," CVC Technical Report 24, Jun. 1998.
  12. K. Lee, J. Ho, D. Kriegman, "Acquiring linear subspaces for face recognition under variable lighting," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 684-698, May 2005. https://doi.org/10.1109/TPAMI.2005.92
  13. FEI face database [Online]. Available: http://www.fei.edu.br/-cet/facedatabase.html (downloaded 2016, Feb. 20)
  14. LIBSVM [Online]. Available: https://www.csie.ntu.edu.tw/-cjlin/libsvm/ (downloaded 2017, Jan. 10)
  15. H. A. Rowley, S. Baluja, and T. Kanade, "Neural network-based face detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 23-38, 1998.