참고문헌
- ACI 318-11 (2011), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
- Albanesi, T., Nuti, C. and Vanzi, I. (2007), "Closed form constitutive relationship for concrete filled FRP tubes under compression", Constr. Build. Mater., 21(2), 409-427. https://doi.org/10.1016/j.conbuildmat.2005.08.004
- Ansari, F. and Li, Q. (1998), "High-strength concrete subjected to triaxial compression", ACI Mater. J., 95(6), 747-755.
- Attard, M.M. and Setunge, S. (1996), "Stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-442.
- Balmer, G.G. (1949), Shearing Strength of Concrete under High Triaxial Stress-Computation of Mohr's Envelope as a Curve, Technical Report No. SP-23, Structure Research Laboratory, Denver, Colorado, U.S.A.
- Binici, B. (2005), "An analytical model for stress-strain behavior of confined concrete", Engineering Structures, 27(7), 1040-1051. https://doi.org/10.1016/j.engstruct.2005.03.002
- Caggiano, A. (2007), "Application of some classic constitutive theories to the numerical simulation of the behavior of plain concrete", M.S. Dissertation, University of Salerno, Salerno, Italy.
- Candappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", ASCE J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209)
- Chen, W.F. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag, New York, U.S.A.
- Chinn, J. and Zimmerman R.M. (1965), "Behavior of plain concrete under various high triaxial compression loading conditions", Technical Report No. WL-TR-64-163, Air Force Weapons Laboratory, New Mexico.
- Ding, F., Tan, L., Liu, X. and Wang, L. (2017), "Behavior of circular thin-walled steel tube confined concrete stub columns", Steel Compos. Struct., 23(2), 229-238. https://doi.org/10.12989/scs.2017.23.2.229
- Dupray, F., Malecot, Y., Daudeville, L. and Buzaud, E. (2009), "A mesoscopic model for the behaviour of concrete under high confinement", J. Numer. Analy. Meth. Geomech., 33(11), 1407-1423. https://doi.org/10.1002/nag.771
- Fam, A.Z. and Rizkalla, S.H. (2001) "Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes", ACI Struct. J., 9(4), 451-461.
- Gabet, T., Malecot, Y. and Daudeville, L. (2008), "Triaxial behavior of concrete under high stresses: Influence of the loading path on compaction and limit states", Cement Concrete Res., 38(3), 403-412. https://doi.org/10.1016/j.cemconres.2007.09.029
- Gabet, T., Vu, X.H., Malecot, Y. and Daudeville, L. (2006), "A new experimental technique for the analysis of concrete under high triaxial loading", J. De Phys. IV, 134, 635-640.
- Ghorbi, E., Soltani, M. and Maekawa, K. (2013), "Development of a compressive constitutive model for FRP-confined concrete elements", Compos. Part B: Eng., 45(1), 504-517. https://doi.org/10.1016/j.compositesb.2012.07.014
- Girgin, Z.C., Anoglu, N. and Anoglu, E. (2007), "Evaluation of strength criteria for very-high-strength concretes under triaxial compression" ACI Struct. J., 104(3), 277-283.
- Green, S.I. and Swanson, S.R. (1973), Static Constitutive Relations for Concrete, Report No. AFWL-TR-72-2, Air Force Weapons Lab, Kirtland Air Force Base, Albuquerque, New Mexico.
- Hansen, T.C. (1995), Triaxial Tests with Concrete and Cement Paste, Report No. 319, Technical University of Denmark, Denmark.
- Harries, K.A. and Kharel, G. (2002), "Behavior and modeling of concrete subject to variable confining pressure", ACI Mater. J., 99(2), 180-189.
- Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", ASCE J. Geotech. Eng., 106(9), 1013-1035.
- Hsieh, S.S., Ting, E.C. and Chen, W.F. (1982), "A plasticityfracture model for concrete", J. Sol. Struct., 18(3), 181-197. https://doi.org/10.1016/0020-7683(82)90001-4
- Hurlbut, B. (1985), "Experimental and computational investigation of strain-softening in concrete", M.S. Dissertation, University of Colorado, U.S.A.
- Imran, I. and Pantazopoulou, S.J. (1996), "Experimental study of plain concrete under triaxial stress", ACI Mater. J., 93(6), 589-60.
- Jiang, T. and Teng, J.G. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010
- Kotsovos, M.D. and Newman, J.B. (1978), "Generalized stressstrain relations for concrete", ASCE J. Eng. Mech., 104(4), 845-856.
- Lahlou, K., Aitcin, P.C. and Chaallal, O. (1992), "Behaviour of high-strength concrete under confined stresses", Cement Concrete Compos., 14(3), 185-193. https://doi.org/10.1016/0958-9465(92)90012-K
- Laine, D.P. (2004), "Effect of axial preloads on confined concrete", M.S. Dissertation, University of Toronto, Canada.
- Leon, A. (1935), "Uber die scherfestigkeit des betons", Beton Eisen, 34(8).
- Li, Q. and Ansari, F. (2000), "High-strength concrete in triaxial compression by different sizes of specimens", ACI Mater. J., 97(6), 684-689.
- Lu, X. and Hsu, C.T.T. (2006), "Behavior of high-strength concrete with and without steel fiber reinforcement in triaxial compression", Cement Concrete Res., 36(9), 1679-1685. https://doi.org/10.1016/j.cemconres.2006.05.021
- Malecot, Y., Vu, X.H. and Daudeville, L. (2009), "Unconfined compressive strength is a poor indicator of the high-pressure mechanical response of concrete", DYMAT, 2, 1325-1331.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", ASCE J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- Markeset, G. and Hillerborg, A. (1995), "Softening of concrete in compression-localization and size effects", Cement Concrete Res., 25(4), 702-708. https://doi.org/10.1016/0008-8846(95)00059-L
- Marques, S.P.C., Marques, D.C.S.C., Da Silva, J.L. and Cavalcante, M.A.A. (2004), "Model for analysis of short columns of concrete confined by fiber-reinforced polymer", ASCE J. Compos. Constr., 8(4), 332-340. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(332)
- Montuori, R., Piluso, V. and Tisi, A. (2012), "Comparative analysis and critical issues of the main constitutive laws for concrete elements confined with FRP", Compos. Part B: Eng., 43(8), 3219-3230. https://doi.org/10.1016/j.compositesb.2012.04.001
- Montuori, R., Piluso, V. and Tisi, A. (2013), "Ultimate behaviour of FRP wrapped sections under axial force and bending: Influence of stress-strain confinement model", Compos. Part B: Eng., 54(1), 85-96. https://doi.org/10.1016/j.compositesb.2013.04.059
- Ozbakkaloglu, T., Lim, J.C. and Vincent, T. (2013), "FRPconfined concrete in circular sections: Review and assessment of stress-strain models", Eng. Struct., 49, 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010
- Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinementsensitive plasticity constitutive model for concrete in triaxial compression", J. Sol. Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022
- Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1928), A Study of the Failure of Concrete under Combined Compressive Stresses, Engineering Experimental Station Bulletin No.185, University of Illinois.
- Sadeghi, K. and Nouban, F. (2017), "Behavior modeling and damage quantification of confined concrete under cyclic loading", Struct. Eng. Mech., 61(5), 625-635. https://doi.org/10.12989/sem.2017.61.5.625
- Samani, A.K. and Attard, M.M. (2012), "Stress-strain model for uniaxial and confined concrete under compression", Eng. Struct., 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027
- Samdani, S. and Sheikh, S.A. (2005), "Analytical study of FRP confined concrete columns", Proceedings of the 4th Conference on Our World in Concrete and Structures, Seoul, South Korea.
- Setunge, S., Attard, M.M. and Darvall, P.P. (1993), "Ultimate strength of confined very high-strength concretes", ACI Struct. J., 90(6), 632-641.
- Sfer, D., Carol, I. and Etse, G. (2002), "Study of the behavior of concrete under triaxial compression" ASCE J. Eng. Mech., 128(2), 156-163. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(156)
- Shin, M. and Andrawes, B. (2010), "Experimental investigation of actively confined concrete using shape memory alloys", Eng. Struct., 32(3), 656-664. https://doi.org/10.1016/j.engstruct.2009.11.012
- Singh, M., Raj, A. and Singh, B. (2011), "Modified mohr-coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks", J. Rock Mech. Min. Sci., 48(4), 546-555. https://doi.org/10.1016/j.ijrmms.2011.02.004
- Smith, S.S., Willam, K.J., Gerstle, K.H. and Sture, S. (1989), "Concrete over the top, or: Is there life after peak?", ACI Mater. J., 86(5), 491-497.
- Spoelstra, M.R. and Monti, G. (1999), "FRP-confined concrete model", ASCE J. Compos. Constr., 3(3), 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
- Tan, T.H. (2005), "Effects of triaxial stress on concrete", Proceedings of the 30th Conference on Our World in Concrete and Structures, Singapore, August.
- Teng, J.G., Huang, Y.L., Lam, L. and Ye, L.P. (2007), "Theoretical model for fiber reinforced polymer-confined concrete", ASCE J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)
- Vonk, R. (1992), "Softening of concrete loaded in compression", Ph. D. Dissertation, Eindhoven University of Technology, the Netherlands.
- Vu, X.H., Malecot, Y., Daudeville, L. and Buzaud, E. (2009), "Effect of the water/cement ratio on concrete behavior under extreme loading", J. Numer. Analy. Meth. Geomech., 33(17), 1867-1888. https://doi.org/10.1002/nag.796
- Willam, K.J. and Warnke, E.P. (1995), "Constitutive model for the triaxial behavior of concrete", Proceedings of the 19th Seminar on Concrete Structure Subjected to Triaxial Stresses, Bergamo, Italy.
- Xiao, Q.G., Teng, J.G. and Yu, T. (2010), "Behavior and modeling of confined high-strength concrete. ASCE J. Compos. Constr., 14(3), 249-259. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000070
- Xie, J., Elwi, A.E. and MacGregor, J.G. (1995), "Mechanical properties of three high-strength concretes containing silica fume", ACI Mater. J., 92(2), 135-145.