• Title/Summary/Keyword: active confinement

Search Result 37, Processing Time 0.021 seconds

Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement

  • Nematzadeh, Mahdi;Hajirasouliha, Iman;Haghinejad, Akbar;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2017
  • This paper presents the results of a comprehensive experimental investigation on the compressive behaviour of steel tube-confined concrete (STCC) stub columns with active and passive confinement. To create active confinement in STCC columns, an innovative technique is used in which steel tube is laterally pre-tensioned while the concrete core is simultaneously pre-compressed by applying pressure on fresh concrete. A total of 135 STCC specimens with active and passive confinement are tested under axial compression load and their compressive strength, ultimate strain capacity, axial and lateral stress-strain curves and failure mode are evaluated. The test variables include concrete compressive strength, outer diameter to wall thickness ratio of steel tube and prestressing level. It is shown that applying active confinement on STCC specimens can considerably improve their mechanical properties. However, applying higher prestressing levels and keeping the applied pressure for a long time do not considerably affect the mechanical properties of actively confined specimens. Based on the results of this study, new empirical equations are proposed to estimate the axial strength and ultimate strain capacity of STCC stub columns with active and passive confinement.

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

Effect of axial loading conditions and confinement type on concrete-steel composite behavior

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.95-109
    • /
    • 2020
  • This paper aims to analytically study the effect of loading conditions and confinement type on the mechanical properties of the concrete-steel composite columns under axial compressive loading. The axial loading is applied to the composite columns in the two ways; only on the concrete core, and on the concrete core and steel tube simultaneously, which are called steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns, respectively. In addition, the confinement is investigated in the three types of passive, short-term active and long-term active confinement. Nonlinear finite element 3D models for analyzing these columns are developed using the ABAQUS program, and then these models are verified with respect to the recent experimental results reported by the authors on the STCC and CFST columns experiencing active and passive confinements. Axial and lateral stress-strain curves as well as the failure mode for qualitative verification, and compressive strength for quantitative verification are considered. It is found that there is a good consistency between the finite element analysis results and the experimental ones. In addition, a parametric study is performed to evaluate the effect of axial loading type, prestressing ratio, concrete compressive strength and steel tube diameter-to-wall thickness ratio on the compressive behavior of the composite columns. Finally, the compressive strength results of CFST specimens obtained via the finite element analysis are compared with the values specified by the international codes and standards including EC4, CSA, ACI-318, and AISC, with the results showing that ACI-318 and AISC underestimate the compressive strength of the composite columns, while EC4 and CSA codes present overestimated values.

Analysis of actively-confined concrete columns using prestressed steel tubes

  • Nematzadeh, Mahdi;Haghinejad, Akbar
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.477-488
    • /
    • 2017
  • In this paper, an innovative technique for finite element (FE) modeling of steel tube-confined concrete (STCC) columns with active confinement under axial compressive loading is presented. In this method, a new constitutive model for the stress-strain relationship of actively-confined concrete is proposed. In total, 14 series of experimental STCC stub columns having active confinement were modeled using the ABAQUS software. The results obtained from the 3D model including the compressive strength at the initial peak point and failure point, as well as the axial and lateral stress-strain curves were compared with the experimental results to verify the accuracy of the 3D model. It was found that there existed a good agreement between them. A parametric study was conducted to investigate the effect of the concrete compressive strength, steel tube wall thickness, and pre-stressing level on the behavior of STCC columns with active confinement. The results indicated that increasing the concrete core's compressive strength leads to an increase in the compressive strength of the active composite column as well as its earlier failure. Furthermore, a reduction in the tube external diameter-to-wall thickness ratio affects the axial stress-strain curve and the confining pressure, while increasing the pre-stressing level has a negligible effect on the two.

Non-linear Analysis of Passive Confined Concrete Structures using Tri-Survace Concrete Model (Tri-Surface 콘크리트 모델을 이용한 수동 구속된 콘크리트의 비선형 해석)

  • 조병완;김장호;김영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.604-607
    • /
    • 2003
  • Recently, hybrid concrete structures such as a concrete-filled steel tubular(CFT), a steel reinforced concrete(SRC) and a composite material are popular in structure applications. They also have merit of high strength, high ductility, and large energy absorption capacity. But the analysis of hybrid concrete structures is very difficult owing to the complex behavior of concrete under passive confinement. This paper has analyzed CFT, which receives passive confinement using Tri-Surface concrete model for three dimension finite element analysis. By the result of that, the proposed model was properly forecasted a concrete behavior that receives passive restraint as well as non-linear analysis of concrete which receive uniaxial stress and high active confinement of 400Mpa. If the model through the steady study is set up especially on the factor of concrete under passive confinement, the proposed concrete model will be surely useful for analysis of the hybrid concrete structures.

  • PDF

Experimental study and calculation of laterally-prestressed confined concrete columns

  • Nematzadeh, Mahdi;Fazli, Saeed;Hajirasouliha, Iman
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.517-527
    • /
    • 2017
  • In this paper, the effect of active confinement on the compressive behaviour of circular steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns is investigated. In STCC columns the axial load is only applied to the concrete core, while in CFST columns the load is carried by the whole composite section. A new method is introduced to apply confining pressure on fresh concrete by laterally prestressing steel tubes. In order to achieve different prestressing levels, short-term and long-term pressures are applied to the fresh concrete. Three groups of STCC and CFST specimens (passive, S-active and L-active groups) are tested under axial loads. The results including stress-strain relationships of composite column components, secant modulus of elasticity, and volumetric strain are presented and discussed. Based on the elastic-plastic theory, the behaviour of the steel tube is also analyzed during elastic, yielding, and strain hardening stages. The results show that using the proposed prestressing method can considerably improve the compressive behaviour of both STCC and CFST specimens, while increasing the prestressing level has insignificant effects. By applying prestressing, the linear range in the stress-strain curve of STCC specimens increases by almost twice as much, while the improvement is negligible in CFST specimens.

Design and Simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH Quantum Dot Laser Diode

  • Chan, Trevor;Son, Sung-Hun;Kim, Kyoung-Chan;Kim, Tae-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.124-127
    • /
    • 2011
  • Quantum dots were designed within a GRIN-SCH(Graded index - Separate confinement Heterostructure) heterostructure to create a high power InAlAs/AlGaAs laser diode. 808 nm light emission was with a quantum dot composition of In0.665Al0.335As and wetting layer composition of Al0.2Ga0.8As by LASTIP simulation software. Typical characteristics of GRIN structures such as high confinement ratios and Gaussian beam profiles were shown to still apply when quantum dots are used as the active media. With a dot density of 1.0x1011 dots/cm2, two quantum dot layers were found to be good enough for low threshold, high-power laser applications.

Aspect of Naked Infinitives of English Perceptual Reports (지각동사 원형부정사 보문의 상의 분석과 학습 도모)

  • 김선희
    • Korean Journal of English Language and Linguistics
    • /
    • v.2 no.4
    • /
    • pp.519-536
    • /
    • 2002
  • This paper is to provide an analysis of the aspectual nature of naked infinitives(NIs) of English perceptual reports. Higginbotham(1983) proposes that only ‘active’ or ‘transient’ verbs can be used as NIs of English perceptual reports, but ‘state’ verbs cannot. This is called “confinement to the active or transient”. But there will be one problem when NIs of English perceptual reports are negatives. This is why the meaning of negative NIs of English perceptual reports may be static, which isn't in line with “confinement to the active or transient”. There are similar problems with ‘state’ NIs of English perceptual reports. In this paper some of these problems can be solved with the “Event Structure” of Pustejovsky(1991). According to Pustejovsky(1991), ‘process’ and ‘transition’ verbs have sub-eventual individuation units, but state verbs have no such units. It is the units that make it possible for ‘process’ and ‘transition’ to be perceived. As a result ‘process’ and ‘transition’ verbs are suitable for NIs of English perceptual reports. Nevertheless, there are still some problems unsolved. Moreover some state verbs are grammatically used as NIs of English perceptual reports. This paper proposes that these state verbs have “potentiality of transition”, and the potentiality comes from only the combination of the two parts of the complement - the subject and the naked infinitive. And the potentiality causes the “Event Structure” of Pustejovsky(1991) to be modified. And this modification makes it possible for us to explain aspect of NIs of English Perceptual Reports. It is concluded with some implication for Korean learners of English as a Foreign Language.

  • PDF

Design of 808nm GRIN-SCH Quantum Dot Laser Diode (808nm GRIN-SCH 양자점 레이저 다이오드 설계)

  • Chan, Trevor;Son, Sung-Hun;Kim, Kyoung-Chan;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.131-131
    • /
    • 2010
  • The power of semiconductor laser diodes has been limited primarily by the heating effects which occur at high optical intensities. The actual limiting event can take one of a number of forms such as. catastrophic optical damage or filamentation. A general approach to this problem is to design a heterostructure which creates a high powered output while maintaining low internal optical intensities. A graded index separate confinement heterostructure (GRIN-SCH) is one such structure that accomplishes the above task. Here, the active region is sandwiched between graded index layers where the index of refraction increases nearer to the active layer. This structure has been shown to yield a high efficiency due to the confinement of both the optical power and carriers, thereby reducing the optical intensity required to achieve higher powers. The optical confinement also reinforces the optical beam quality against high power effects. Quantum dots have long been a desirable option for laser diodes due to the enhanced optical properties associated with the zeroth dimensionality. In our work, we use PICS3D software created by Crosslight Software Inc. to simulate the performance of In0.67A10.33As/A10.2Ga0.8AsquantumdotsusedwithaGRIN-SCH. The simulation tools are used to optimize the GRIN-SCH structure for high efficiency and optical beam quality.

  • PDF