DOI QR코드

DOI QR Code

Effects of Counter-rotation Position on Knee/Hip Angulation, Center of Mass Inclination, and Edging Angle in Simulated Alpine Skiing

  • Yoon, Sukhoon (Department of Community Sport, Korea National Sport University) ;
  • Kim, Jin-Hae (Department of Physical Education, Korea National Sport University) ;
  • Park, Jae-Hyeon (Department of Sport and Healthy Aging, Korea National Sport University) ;
  • Ryu, Jiseon (Department of Health and Exercise Science, Korea National Sport University) ;
  • Park, Sang-Kyoon (Department of Physical Education, Korea National Sport University) ;
  • Kim, Joo-Nyeon (Motion Innovation Centre, Korea National Sport University)
  • Received : 2017.04.26
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

Objective: To investigate rotation movement of segment for performing each position and its effect on knee/hip angulation, COM inclination, and edging angle changes. Method: Twelve Alpine skiers (age: $25.8{\pm}4.8years$, height: $173.8{\pm}5.9cm$, weight: $71.4{\pm}7.4kg$, length of career: $9.9{\pm}4.6years$) participated in this study. Each skier was asked to perform counter-rotation, neutral, and rotation positions. Results: Shank and thigh were less rotated in the counter-rotation position than in other positions, whereas the trunk and pelvis were more counter-rotated (p<.05). Hip angulation, COM inclination, and edging angle were significantly greater in the counter-rotation position than in other positions (p<.05). Conclusion: Our finding proved that the counter-rotation position increases hip angulation, COM inclination, and edging angle. Consequently, we suggest that skiers should perform counter-rotation of the trunk and pelvis relative to the ski direction in the vertical axis for the counter-rotation position. Further analysis will continue to investigate the effects of the counter-rotation position in real ski slope with kinetic analysis.

Keywords

References

  1. Brown, C. A. (2009). Modeling edge-snow interactions using machining theory. Science and skiing IV, UK: Meyer & Meyer Sport, 175-182.
  2. Bohm, H. & Senner, V. (2008). Effect of ski boot settings on tibiofemoral abduction and rotation during standing and simulated skiing. Journal of Biomechanics, 41(3), 498-505. https://doi.org/10.1016/j.jbiomech.2007.10.019
  3. Brodie, M., Walmsley, A. & Page, W. (2008). Fusion motion capture: a prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing. Sports Technology, 1(1), 17-28. https://doi.org/10.1002/jst.6
  4. Demsar, I., Duhovnik, J., Lesnik, B. & Supej, M. (2015). Multi-axis prosthetic knee resembles alpine skiing movements of an intact leg. Journal of Sports Science & Medicine, 14(4), 841-848.
  5. Federolf, P., Roos, M., Luthi, A. & Dual, J. (2010). Finite element simulation of the ski-snow interaction of an alpine ski in a carved turn. Sports Engineering, 12(3), 123-133. https://doi.org/10.1007/s12283-010-0038-z
  6. Federolf, P., Scheiber, P., Rauscher, E., Schwameder, H., Luthi, A., Rhyner, H. U. & Muller, E. (2008). Impact of skier actions on the gliding times in alpine skiing. Scandinavian Journal of Medicine & Science in Sports, 18(6), 790-797. https://doi.org/10.1111/j.1600-0838.2007.00745.x
  7. Federolf, P., Luthi, A., Roos, M. & Dual, J. (2010). Parameter study using a finite element simulation of a carving alpine ski to investigate the turn radius and its dependence on edging angle, load, and snow properties. Sports Engineering, 12(3), 135-141. https://doi.org/10.1007/s12283-010-0039-y
  8. Greenwald, R., Senner, V. & Swanson, S. (2001). Biomechanics of carving skis. Schweizerische Zeitschrift fur Sportmedizin und Sporttraumatologie, 49(1), 40-44.
  9. Heinrich, D., Mossner, M., Kaps, P. & Nachbauer, W. (2010). Calculation of the contact pressure between ski and snow during a carved turn in Alpine skiing. Scandinavian Journal of Medicine & Science in Sports, 20(3), 485-492. https://doi.org/10.1111/j.1600-0838.2009.00956.x
  10. Heinrich, D., Mossner, M., Kaps, P. & Nachbauer, W. (2011). A parameter optimization method to determine ski stiffness properties from ski deformation data. Journal of Applied Biomechanics, 27(1), 81-86. https://doi.org/10.1123/jab.27.1.81
  11. Hirano, Y. (2006). Quickest descent line during alpine ski racing. Sports Engineering, 9(4), 221-228. https://doi.org/10.1007/BF02866060
  12. Howe, J. (2001). The new skiing mechanics: including the technology of short radius carved turn skiing and the claw ski. Waterford.
  13. Kim, J. N., Jeon, H. M., Yoo, S. H., Ha, S. H., Kim, J. H., Ryu, J. S., Park, S. K. & Yoon, S. H. (2014). Comparisons of Center of Mass and Lower Extremity Kinematic Patterns between Carved and Basic Parallel Turn during Alpine Skiing. Korean Journal of Sport Biomechanics, 24(3), 201-207. https://doi.org/10.5103/KJSB.2014.24.3.201
  14. Kim, J. N., Yoo, S. H., Ha, S. H., Kim, J. H., Ryu, J. S., Park, S. K. & Yoon, S. H. (2014). Comparisons of foot pressure patterns between experienced skiers and intermediate skiers during alpine skiing. Korean Journal of Sport Biomechanics, 24(1), 19-26. https://doi.org/10.5103/KJSB.2014.24.1.019
  15. Koo, D. H., Lee, M. H., Kweon, H. S., Hyun, B. R. & Eun, S. D. (2014). Comparisons of pflugbogen's biomechanical characteristics to develop interactive ski simulator. Korean Journal of Sport Biomechanics, 24(3), 189-199. https://doi.org/10.5103/KJSB.2014.24.3.189
  16. Kroll, J., Wakeling, J. M., Seifert, J. G. & Muller, E. (2010). Quadriceps Muscle Function during Recreational Alpine Skiing. Medicine and Science in Sports and Exercise, 42(8), 1545-1556. https://doi.org/10.1249/MSS.0b013e3181d299cf
  17. Kruger, A. & Edelmann-Nusser, J. (2010). Application of a full body inertial measurement system in alpine skiing: A comparison with an optical video based system. Journal of Applied Biomechanics, 26, 516-521. https://doi.org/10.1123/jab.26.4.516
  18. Lee, H. T., Roh, H. L. & Kim, Y. S. (2016). Kinematic characteristics of the lower extremity during a simulated skiing exercise in healthy participants. Journal of Physical Therapy Science, 28(2), 626-631. https://doi.org/10.1589/jpts.28.626
  19. LeMaster, R. (2010). Ultimate skiing. Champaign, IL: Human Kinetics.
  20. Lind, D. A. & Sanders, S. (2004). The physics of skiing: skiing at the triple point. Springer Science & Business Media.
  21. Mossner, M., Heinrich, D., Schindelwig, K., Kaps, P., Schretter, H. & Nachbauer, W. (2014). Modeling the ski-snow contact in skiing turns using a hypoplastic vs an elastic force-penetration relation. Scandinavian Journal of Medicine & Science in Sports, 24(3), 577-585. https://doi.org/10.1111/sms.12035
  22. Muller, E., Bartlett, R., Raschner, C., Schwameder, H., Benko-Bernwick, U. & Lindinger, S. (1998). Comparisons of the ski turn techniques of experienced and intermediate skiers. Journal of Sports Sciences, 16(6), 545-559. https://doi.org/10.1080/026404198366515
  23. Nam, C. H. & Woo, B. H. (2007). Kinematical analysis of up-down motion in ski simulator. Korean Journal of Sport Biomechanics, 17(3), 41-49. https://doi.org/10.5103/KJSB.2007.17.3.041
  24. Nedergaard, N. J., Heinen, F., Sloth, S., Hebert-Losier, K., Holmberg, H. C. & Kersting, U. G. (2014). The effect of light reflections from the snow on kinematic data collected using stereo-photogrammetry with passive markers. Sports Engineering, 17(2), 97-102. https://doi.org/10.1007/s12283-013-0140-0
  25. Scott, N., Yoneyama, T., Kagawa, H. & Osada, K. (2007). Measurement of ski snow-pressure profiles. Sports Engineering, 10(3), 145-156. https://doi.org/10.1007/BF02844186
  26. Sporri, J., Kroll, J., Schwameder, H., Schiefermuller, C. & Muller, E. (2012). Course setting and selected biomechanical variables related to injury risk in alpine ski racing: an explorative case study. British Journal of Sports Medicine, bjsports-2012.
  27. Stricker, G., Scheibera, P., Lindenhofera, E. & Müllera, E. (2010). Determination of forces in alpine skiing and snowboarding: Validation of a mobile data acquisition system. European Journal of Sport Science, 10(1), 31-41. https://doi.org/10.1080/17461390903108141
  28. Supej, M. (2008). Differential specific mechanical energy as a quality parameter in racing alpine skiing. Journal of Applied Biomechanics, 24(2), 121-129. https://doi.org/10.1123/jab.24.2.121
  29. Supej, M. (2010). 3D measurements of alpine skiing with an inertial sensor motion capture suit and GNSS RTK system. Journal of Sports Sciences, 28(7), 759-769. https://doi.org/10.1080/02640411003716934
  30. Supej, M. & Holmberg, H. C. (2010). How gate setup and turn radii influence energy dissipation in slalom ski racing. Journal of Applied Biomechanics, 26(4), 454-464. https://doi.org/10.1123/jab.26.4.454
  31. Supej, M., Hébert-Losier, K. & Holmberg, H. C. (2015). Impact of the steepness of the slope on the biomechanics of World Cup slalom skiers. International Journal of Sports Physiology & Performance, 10(3), 361-368. https://doi.org/10.1123/ijspp.2014-0200
  32. Supej, M., Kipp, R. & Holmberg, H. C. (2011). Mechanical parameters as predictors of performance in alpine World Cup slalom racing. Scandinavian Journal of Medicine & Science in Sports, 21(6), e72-81. https://doi.org/10.1111/j.1600-0838.2010.01159.x
  33. Supej, M., Saetran, L., Oggiano, L., Ettema, G., Sarabon, N., Nemec, B. & Holmberg, H. C. (2013). Aerodynamic drag is not the major determinant of performance during giant slalom skiing at the elite level. Scandinavian Journal of Medicine & Science in Sports, 23(1), e38-47. https://doi.org/10.1111/j.1600-0838.2011.01348.x
  34. Vaverka, F., Vodickova, S. & Elfmark, M. (2012). Kinetic analysis of ski turns based on measured ground reaction forces. Journal of Applied Biomechanics, 28(1), 41-47. https://doi.org/10.1123/jab.28.1.41
  35. Yoneyama, T., Kagawa, H., Unemoto, M., Lizuka, T. & Scott, N. W. (2009). A ski robot system for qualitative modelling of the carved turn. Sports Engineering, 11(3), 131-141. https://doi.org/10.1007/s12283-009-0018-3
  36. Yoneyama, T., Scott, N., Kagawa, H. & Osada, K. (2008). Ski deflection measurement during skiing and estimation of ski direction and edge angle. Sports Engineering, 11(1), 3-13. https://doi.org/10.1007/s12283-008-0001-4