• Title/Summary/Keyword: Counter rotation position

Search Result 13, Processing Time 0.021 seconds

Effects of Counter-rotation Position on Knee/Hip Angulation, Center of Mass Inclination, and Edging Angle in Simulated Alpine Skiing

  • Yoon, Sukhoon;Kim, Jin-Hae;Park, Jae-Hyeon;Ryu, Jiseon;Park, Sang-Kyoon;Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • Objective: To investigate rotation movement of segment for performing each position and its effect on knee/hip angulation, COM inclination, and edging angle changes. Method: Twelve Alpine skiers (age: $25.8{\pm}4.8years$, height: $173.8{\pm}5.9cm$, weight: $71.4{\pm}7.4kg$, length of career: $9.9{\pm}4.6years$) participated in this study. Each skier was asked to perform counter-rotation, neutral, and rotation positions. Results: Shank and thigh were less rotated in the counter-rotation position than in other positions, whereas the trunk and pelvis were more counter-rotated (p<.05). Hip angulation, COM inclination, and edging angle were significantly greater in the counter-rotation position than in other positions (p<.05). Conclusion: Our finding proved that the counter-rotation position increases hip angulation, COM inclination, and edging angle. Consequently, we suggest that skiers should perform counter-rotation of the trunk and pelvis relative to the ski direction in the vertical axis for the counter-rotation position. Further analysis will continue to investigate the effects of the counter-rotation position in real ski slope with kinetic analysis.

Design and Meshing Analysis of a Non-involute Internal Gear for Counters (계수기용 비인벌류트 치형의 내치차 설계와 물림해석)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.212-217
    • /
    • 2014
  • A counter gear transmits the rotation angle, so the angular velocity ratio of the gear does not necessarily need to be constant in the meshing process. As a pinion has a small number of teeth when combined with an internal gear for counters, tooth interference can occur with the use of an involute curve. This paper introduces circular arcs that represent a tooth profile and fillet for the profile design of a pinion through the combination of arcs with lines. The straight line of a rack tooth represents the profile of a mating internal gear. Thus, the circular arc and line maintain contact during the rotation of the counter gear. This paper presents an analysis of the meshing of the circular arc tooth and rack tooth along with the properties of the counter gear, such as the change in rotational velocity and amount of backlash. The contact ratio of the counter gear is 1 because the tooth contact occurs between circular arcs and line. The initial position of tooth contact, which denotes the simultaneous contact of two teeth, is found. As the rotation of the pinion, only one tooth keeps the contact situation. This meshing property is analyzed by the geometrical constraints of the tooth profile in contact and the results are presented as graphical diagrams in which tooth-arc movements are superimposed.

The influence of horizontal cephalic rotation on the deviation of mandibular position

  • Katayama, Naoto;Koide, Kaoru;Koide, Katsuyoshi;Mizuhashi, Fumi
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.401-407
    • /
    • 2018
  • PURPOSE. When performing an occlusal procedure, it is recommended that the patient should be sitting straight with the head in a natural position. An inappropriate mandibular position caused by an incorrect occlusal record registration or occlusal adjustment can result in damaged teeth and cause functional disorders in muscles and temporomandibular joints. The purpose of this study was to clarify the influence of horizontal cephalic rotation on mandibular position by investigating the three-dimensional positions of condylar and incisal points. MATERIALS AND METHODS. A three-dimensional jaw movement measurement device with six degrees of freedom (the WinJaw System) was used to measure condylar and incisal points. The subjects were asked to sit straight with the head in a natural position. The subjects were then instructed to rotate their head horizontally $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, $40^{\circ}$, $50^{\circ}$and $60^{\circ}$ in the right or left direction. RESULTS. The results indicated that horizontal cephalic rotation made the condyle on the rotating side shift forward, downward, and toward the inside, and the condyle on the counter rotating side shift backward, upward, and toward the outside. Significant differences in deviations were found for angles of rotation higher than $20^{\circ}$. The incisal point shifted in the forward and counterrotating directions, and significant differences were found for angles of rotation higher than $20^{\circ}$. CONCLUSION. The mandibular position was altered by horizontal cephalic rotations of more than $20^{\circ}$. It is essential to consider the possibility of deviation of the mandibular position during occlusal procedures.

Measurement Method of HDD Absolute Unbalance Magnitude and Position by measuring the Mobility (모빌리티 측정을 통한 하드디스크의 Unbalance 검출 및 보정방법)

  • Choe Hyeon;Kim In Ung;Lee Jae Won;Jeong Yong Gu;Choe Jeong Heon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.340.1-340
    • /
    • 2002
  • The unbalance exciting force induced by HDD of lately getting higher speed is directly influenced by the rotational speed and the mechanical assembly allowance between disk and spindle motor, and which gives rise to the structure borne noise of the personal computer. The absolute unbalance mass of HDD needs to be measured and adjusted by the counter mass to control the unbalance exciting force effectively in the stage of assembling the disk and spindle motor. This study introduces the measurement methods of the magnitude of the absolute unbalance mass and the position of HDD by 2 accelerometers. The absolute unbalance mass can be obtained by the acceleration responses and the mobility of the mechanical part, while the position of the unbalance mass can e obtained by the rotation acceleration orbit.

  • PDF

A Design of SRM Controller using Microprocessor

  • Park, Joon-Hoon;Ahn, Jung-Soo;Han, Wun-Dong;Park, Boo-Chong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2023-2026
    • /
    • 2002
  • This paper explains the study of controller design applied to SRM(Switched Reluctance Motor) concept. This controller executes controller algorithms via ${\mu}$-processor to increase stability and precise measurement, and VHDL (Very high speed integrated circuit Hardware Description Language) is designed to generate SRM driving signal. During initial period, SRM controller was designed to control .respective target RPM (Revolution per minutes) and PR (Proportional Integral Differential) coming from the PC(Personal Computer) monitor program, and receiving clockwise and counter-clockwise rotation signal and target RPM coming from the front panel, and receiving the location of rotational element and RPM generating from the position censor during activation period.

  • PDF

Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

  • Song, Jae-Won;Lim, Joong-Ki;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • Objective: Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods: Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results: In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions: This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion.

Reduction Chattering Error of Reed Switch Sensor for Remote Measurement of Water Meter (Reed Switch 센서를 이용한 원격 검침용 상수도 계량기에서 Chattering 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kwon, Jong-Won;Park, Yong-Man;Koo, Sang-Jun;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.377-379
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors used for automatic remote measurement of water supply system, a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used in measurement application by detecting the rotational or translational displacement. To apply for flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just installed simply on the mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor, two steel leaf springs make mechanical contact and apart as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But it occurs data difference or errors by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing car near to the switch sensor installed location. In order to reduce chattering error, most system uses just software methods for example using filter and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical hysteresis characteristics.

  • PDF

A STUDY ON POSITIONAL CHANCE OF THE HYOID BONE BEFORE AND AFTER ACTIVATOR THERAPY IN ANGLE'S CLASS III MALOCCLUSION PATIENTS (Angle씨 III급 부정교합 환자중 Activator사용 전후의 설골의 위치 변화에 관한 연구)

  • Koh, Sang-Duk;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.827-839
    • /
    • 1994
  • This study was conducted to assess the positional changes of hyoid bone following the use of activator in Angles class III malocclusion patients with functional factors. For this study, 40 Angle's class I patients and 40 Angle's class III patients, totally 80 subjects were used. They are all in Hellman's dental age IIIB-IIIC ranges. In lateral cephalogram to compare Angle's class I group and Angle's class III group, and the positional changes of the hyoid bone before and after the use of activator in Angle's class III malocclusion group. The results were obtained as follows; 1. Comparison of Angle's class I group and Angle's class III group. In comparison to Angle's class I group, hyoid bone is more anteriorly and superiorly positioned in Angle's class III group. The hyoid bone showed reverse inclination to the mandibular plane in Angle's class III malocclusion group. 2. Comparison of the hyoid positional change before and after use of Activator in Angle's class III malocclusion group. The hyoid bone is displaced posteriorly and inferiorly in vertical relationship. The hyoid bone also showed counter-clockwise rotation. 3. No statistical difference was found between after Activator use data of Angle's class m malocclusion group and Angle's class I group. It is concluded that the hyoid bone in Angle's class III malocclusion group changed its position, similar to Angle's class I malocclusion group.

  • PDF

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

Design of adhesive wireless bookbinding machine with optimal motor control and automatic cover insertion (최적의 모터 제어 및 겉표지 자동 투입 기능을 적용한 접착식 무선 제본기 설계)

  • Song, Je-Ho;Lee, In-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.198-203
    • /
    • 2019
  • An adhesive wireless bookbinding machine was designed with optimal motor control and automatic cover insertion for bookbinding. The noise level was improved by modifying the thrust of the machine and changing from a compressor method to an AC induction motor control method. The automatic cover insertion function was added to improve the task speed. Motor and decelerator damage can be caused by sudden braking and acceleration of the motor rotation (clockwise and counter-clockwise), so a buffer-type locational control system was developed to secure stable movement and durability. The complicated internal design was also simplified, and the volume and weight were decreased. The results show that the noise was decreased by 57% from 135 dB to 71.7 dB, and the task speed was decreased by 57% from 18 s to 9.58 s. The automatic cover insertion was designed to supply a maximum of 130 sheets per supply.