DOI QR코드

DOI QR Code

Rock physics modeling in sand reservoir through well log analysis, Krishna-Godavari basin, India

  • Singha, Dip Kumar (Department of Geophysics, Institute of Science, Banaras Hindu University) ;
  • Chatterjee, Rima (Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines))
  • Received : 2016.05.27
  • Accepted : 2017.02.16
  • Published : 2017.07.25

Abstract

Rock physics modeling of sandstone reservoir from gas fields of Krishna-Godavari basin represents the link between reservoir parameters and seismic properties. The rock physics diagnostic models such as contact cement, constant cement and friable sand are chosen to characterize reservoir sands of two wells in this basin. Cementation is affected by the grain sorting and cement coating on the surface of the grain. The models show that the reservoir sands in two wells under examination have varying cementation from 2 to more than 6%. Distinct and separate velocity-porosity and elastic moduli-porosity trends are observed for reservoir zones of two wells. A methodology is adopted for generation of Rock Physics Template (RPT) based on fluid replacement modeling for Raghavapuram Shale and Gollapalli Sandstones of Early Cretaceous. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and P-impedance template, generated for this above formations is able to detect shale, brine sand and gas sand with varying water saturation and porosity from wells in the Endamuru and Suryaraopeta gas fields having same shallow marine depositional characters. This RPT predicted detection of water and gas sands are matched well with conventional neutron-density cross plot analysis.

Keywords

References

  1. Avseth, P. (2000), "Combining rock physics and sedimentology for seismic reservoir characterization of north sea turbidite systems", Ph.D. Thesis; Stanford University, Stanford, CA, USA .
  2. Avseth, P., Dvorkin, J. and Mavko, G. (2000), "Rock physics diagnostic of north sea sands: link between microstructure and seismic properties", Geophys. Res. Lett., 27(17), 2761-2764. https://doi.org/10.1029/1999GL008468
  3. Avseth, P., Mukerji, T. and Mavko, G. (2005), Quantitative Seismic Interpretation: Applying Rock Physics to Reduce Interpretation Risk, Cambridge University Press, Cambridge, UK, 359 p.
  4. Avseth, P., Jorstad, A., Wijngaarden, A.J. and Mavko, G. (2009), "Rock physics estimation of cement volume, sorting, and net-to-gross in north sea sandstones", The Leading Edge, 28(1), 98-108. https://doi.org/10.1190/1.3064154
  5. Avseth, P., Mukerji, T., Mavko, G. and Dvorkin, J. (2010), "Rock physics diagnostics of depositional texture, diagenetic alterations, and reservoir homogeneity in high porosity siliciclastic sediments and rocks - A review of selected models and suggested work flows", Geophysics, 75(5), A31-A47. https://doi.org/10.1190/1.3476312
  6. Batzle, M. and Wang, Z. (1992), "Seismic properties of pore fluids", Geophysics, 57(11), 1396-1408. https://doi.org/10.1190/1.1443207
  7. Bello, R., Igwenagu, C.L. and Onifade, Y. (2015), "Cross plotting of rock properties for fluid and lithology discrimination using well data in a Niger Delta Oil Field", J. Appl. Sci. Environ. Manage., 19(3), 539-546.
  8. Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range", J. Acoust. Soc. Am., 28(2), 168-191. https://doi.org/10.1121/1.1908239
  9. Chatterjee, R. and Mukhopadhyay, M. (2002), "Petrophysical and geomechanical properties of rocks from the oil fields of the Krishna-Godavari and Cauvery Basins, India", Bull. Eng. Geol. Environ., 61(2), 169-178. https://doi.org/10.1007/s100640100137
  10. Chatterjee, R., Datta Gupta, S. and Farooqui, M.Y. (2013), "Reservoir identification using full stack seismic inversion technique: A case study from Cambay basin oilfields, India", J. Petrol. Sci. Eng., 109, 87-95. https://doi.org/10.1016/j.petrol.2013.08.006
  11. Datta Gupta, S., Chatterjee, R. and Farooqui, M.Y. (2012), "Rock physics template (RPT) analysis of well logs and seismic data for lithology and fluid classification in Cambay basin", Int. J. Earth Sci., 101(5), 1407-1426. https://doi.org/10.1007/s00531-011-0736-1
  12. Domenico, S.N. (1976), "Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir", Geophysics, 41(5), 882-894. https://doi.org/10.1190/1.1440670
  13. Durrani, M.Z.A., Willson, K., Chen, J., Tapp, B. and Akram, J. (2014), "Rational rock physics for improved velocity prediction and reservoir properties estimation for granite wash (tight sands) in Anadarko Basin, Texas", Int. J. Geophys., Article ID 209351, 1-15.
  14. Dvorkin, J. and Nur, A. (1996), "Elasticity of high-porosity sandstones: Theory for two North Sea data sets", Geophysics, 61(5), 1363-1370. https://doi.org/10.1190/1.1444059
  15. Dvorkin, J., Nur, A. and Yin, H. (1994), "Effective properties of cemented granular material", Mech. Mater., 18(4), 351-366 https://doi.org/10.1016/0167-6636(94)90044-2
  16. Dvorkin, J., Nur, A. and Chaika, C. (1996), "Stress sensitivity of sandstones", Geophysics, 61(2), 444-455. https://doi.org/10.1190/1.1443972
  17. Gassmann, F. (1951a), "Elastic waves through a packing of spheres", Geophysics, 16(4), 673-685. https://doi.org/10.1190/1.1437718
  18. Gassmann, F. (1951b), "Elasticity of porous media", Uber die elastizitatporosermedien, Vierteljahrsschrift der Natur forschenden Gesselschaft, 96, 1-23.
  19. Gray, D., Day, S. and Schapper, S. (2015), "Rock physics driven seismic data processing for the athabasca oil sands northeastern Alberta", CSEG Recorder, March, pp. 32-40.
  20. Gupta, S.K. (2006), "Basin architecture and petroleum system of Krishna Godavari Basin, east coast of India", Leading Edge, 25(7), 830-837. https://doi.org/10.1190/1.2221360
  21. Hashin. Z. and Shtrikman, S. (1963), "A variational approach to the elastic behavior of multiphase materials", J. Mech. Phys. Solids, 11, 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  22. Hossain, Z and Macgregor, L. (2014), "Advanced rock-physics diagnostic analysis: A new method for cement quantification", The Leading Edge, 33(3), 310-316. https://doi.org/10.1190/tle33030310.1
  23. Levien, L., Prewitt, C.T. and Weidner, D.J. (1980), "Structure and elastic properties of quartz at pressure", Am. Minerol., 65(9-10), 920-930.
  24. Marcussen, O ., Maast, T.E., Mondol, N.H., Jahren, J. and Bjorlykke, K. (2010), "Changes in physical properties of a reservoir sandstone as a function of burial depth - The etive formation, northern North Sea", Marine Petrol. Geol., 27(8), 1725-1735. https://doi.org/10.1016/j.marpetgeo.2009.11.007
  25. Mavko, G., Mukerji, T. and Dvorkin, J. (1998), The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge University Press, Cambridge, UK, 329 p.
  26. Mavko, G., Mukerji, T. and Dvorkin, J. (2009), The Rock Physics Hand Book: Tools for Seismic Analysis for Porous Media, (2nd Eds.), Cambridge University Press, Cambridge, UK, 524.
  27. Mindlin, R.D. (1949), "Compliance of elastic bodies in contact", J. Appl. Mech., 16, 259-268.
  28. Mohammed, Y.A. and Zillur, R. (2001), "A mathematical algorithm for modeling geomechanical rock properties of the Khuff and Pre-Khuff Reservoirs in Ghawar Field", SPE Middle East Oil Show, Bahrain, March, Paper ID SPE 68194.
  29. Murthy, M.V.K., Padhy, P.K. and Prasad, D.N. (2011), "Mesozoic hydrogeologic systems and hydrocarbon habitat, Mandapeta-Endamuru area, Krishna Godavari Basin India", AAPG Bulletin, 95(1), 147-167. https://doi.org/10.1306/06301009134
  30. Mukerji, T., Avseth, P., Mavko, G., Takahashi, I. and Gonzalez, F. (2001), "Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization", The Leading Edge, 20(3), 313-319. https://doi.org/10.1190/1.1438938
  31. Omudu, L.M., Ebeniro, J.O., Xynogalas, M., Osayande, N. and Olotu, S. (2008), "Fluid discrimination and reservoir characterization from onshore Niger Delta", Proceedings of 78th Society of Exploration Geophysicists International Exposition and Annual Meeting, Las Vegas, NV, USA, November, Volume 4, pp. 1996-2000.
  32. Potter, C.C. and Foltinek, D.S. (1997), "Formation elastic parameters by deriving S-wave velocity logs", CREWES Report; Volume 9, February.
  33. Prasad, B. (1999), "Palynological characterisation, bio stratigraphy and depositional environment of Pre Tertiary litho-units of Krishna-Godavari basin, India", Geosci. J., 20(2), 12-33.
  34. Rao, G.N. (2001), "Sedimentation, stratigraphy, and petroleum potential of Krishna-Godavari basin, East Coast of India", AAPG Bulletin, 85(9), 1623-1043.
  35. Samantaray, S. and Gupta, P. (2008), "An interpretative approach for gas zone identification and lithology discrimination using derivatives of ${\lambda}{\ast}{\rho}\;and\;{\mu}{\ast}{\rho}$ attributes", Proceedings of the 7th Biennial International Conference and Exposition on Petroleum Geophysics, Hyderabad, India, January, 386-341.
  36. Sarasty, J.J. and Stewart, R.R. (2003), "Analysis of well-log data from the white rose oilfield, offshore Newfoundland", CREWES Research Report, 15, 1-16.
  37. Sastri, V., Sinha, R.N., Singh, G. and Murti, K.V.S. (1973), "Stratigraphy and tectonics of sedimentary basins on the east coast of peninsular India", AAPG Bulletin, 57(4), 655-678.
  38. Sastri, V.V., Venkatachala, B.S. and Narayanan, V. (1981), "The evolution of the east coast of India", Palaeogeography, Palaeoclimatology, Palaeoecology, 36(1-2), 23-54. https://doi.org/10.1016/0031-0182(81)90047-X
  39. Shanmugam, G., Srivastava, S.K. and Das, B. (2009), "Sandy debrites and tidalites of pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari Basin (India): Implications", J. Sedim. Res., 79(9), 736-756. https://doi.org/10.2110/jsr.2009.076
  40. Singha, D.K. and Chatterjee, R. (2014), "Detection of overpressure zones and a statistical model for pore pressure estimation from well logs in the Krishna-Godavari Basin, India", Geochem. Geophys. Geosyst., 15(4), 1009-1020. https://doi.org/10.1002/2013GC005162
  41. Singha, D.K., Chatterjee, R., Sen, M.K. and Sain, K. (2014), "Pore pressure prediction in gas-hydrate bearing sediments of Krishna-Godavari Basin, India", Marine Geol. 357, 1-11. https://doi.org/10.1016/j.margeo.2014.07.003
  42. Walderhaug, O. and Bjorkum, P.A. (2003), "The effect of stylolite spacing in quartz cementation in the lower jurassic sto formation, Southern Barents Sea", J. Sedim. Res., 73(2), 146-156. https://doi.org/10.1306/090502730146
  43. Wood, A.B. (1941), Textbook of Sound Being an Account of the Physics of Vibrations with Special Reference to Recent Theoretical and Technical Developments, (2nd Eds.), G. Bell and Sons Ltd., London, UK, 578 p.
  44. Xin, G. and Han, D. (2009), "Lithology and fluid differentiation using a rock physics template", The Leading Edge, 28(1), 60-65. https://doi.org/10.1190/1.3064147

Cited by

  1. Coupled Geomechanical-Flow Assessment of CO2 Leakage through Heterogeneous Caprock during CCS vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/1474320
  2. Effect of Kerogen and TOC on Seismic Characterization of Lower Cretaceous Shale Gas Plays in Lower Indus Basin, Pakistan vol.94, pp.3, 2017, https://doi.org/10.1007/s12594-019-1312-8
  3. Seismic estimation of fluid saturation based on rock physics: A case study of the tight-gas sandstone reservoirs in the Ordos Basin vol.10, pp.1, 2017, https://doi.org/10.1190/int-2021-0124.1