DOI QR코드

DOI QR Code

FEMFC 최적설계를 위한 촉매층모델과 기체확산층 특성해석

Characteristic analysis of The Catalyst Layer and Gas Diffusion Layer Model for FEMFC optimal design

  • Kwon, Kee-Hong (Dept. of Electronics Engineering, Suseong University)
  • 투고 : 2017.05.16
  • 심사 : 2017.06.16
  • 발행 : 2017.06.30

초록

고분자 막 연료전지는 높은 전력밀도, 낮은 배출 및 낮은 동작온도 때문에 미래 자동차 및 전력생산의 강력한 보류이다. FEMFC 내부의 기체확산층(GDL)의 중요한 관심은 물의 조절이다. GDL은 소수성 PTFE와 전기전도성을 위해서 탄소로 보통 구성되어 있다. 이 시뮬레이션에서 GDL 흐름은 확립된 방정식 모델의 단순화된 접근법으로 조사되었다. GDL의 성능은 모델 방정식을 이용하여 전지의 내부열, 수증기 밀도 와 산소밀도의 결과를 보였다. FEMFC 촉매층 모델은 유효인자, Butler-volmer 와 수소유동 밀도의 결과를 나타냈다. 이 결과들은 몇 가지 요소들과 함께 영향의 차이는 흥미 가지게 되며 정보는 연료전지를 설계하는데 도움을 줄 것이다.

Proton Exchange Membrane Fuel Cell (FEMFC) is a strong candidate for future automobile and power generation because of its high power density, low emission and low operation temperature. The major concerns of the gas diffusion layer (GDL) inside a FEMFC is water management. The GDL is typically comprised of carbon for electrical conductivity and PTFE for Hydrophobicity. In this simulation, GDL flooding was investigated using a simplified approach method of an established equation models(Fick' Law, Darcy, Law, Stefan-Maxwell diffusion). The performance of GDL was shown using result of the inner heat, water density and oxygen density of the cell using model equations. The catalyst layer mode in FEMFC showed results of effectiveness factor, Butler-volmer and hydrogen flux density. These results are interesting because the influence of several factors has been shown and the information will be helpful for fuel cell design.

키워드

참고문헌

  1. H. C. Andrews and B. R. Hunt, Digital Image Restoration, Engle-wood Cliffs, NJ, Prentice-Hall, 1977.
  2. Rafael C. Gonzalez, and Richard E. Woods, "Digital Image Processing," Addison-Wesley Publishing Company, 1992.
  3. Reginald L. Lagendijk and Jan Biemond, "Regularized iterative image restoration with ringing reduction," IEEE Trans. ASSp, vol 36, NO. 12, December 1988. DOI : 10.1109/29.9032
  4. A. L. Steven, W. Zucker, and A. Rossenfeld, "Iterative enhancement of noisy images," IEEE Trans. system, Man and Cybernetics SMC-7, 1977, pp. 435-442 DOI : 10.1109/TSMC.1977.4309740
  5. H. J. Trussell and M. R. Civanlar, "The feasible solutions in signal restoration," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 201-212, 1984. DOI : 10.1109/TASSP.1984.1164297
  6. A. K. katsaggelos, J. Biemond, R. M. Mersereau, and R. W. Schafer, "A general formulation of constrained iterative image restoration algorithms," in Proc. IEEE Int. conf. Acoust., Speech, Signal Processing 1985, Tmapa, FL, 1985, pp. 700-703
  7. K. Miller, "Least squares methods for ill-posed problems with a prescribed bound," SIAM J . Math., Anal., vol.1, pp. 52-74, 1970. DOI : 10.1137/0501006
  8. P. H. Westerink, J. Biemond, and P. H. L. de Bruin, "Digital color image restoration," in Signal Processing III :Theories and Applications, I. T. Young et al., Eds. Amsterdam, The Netherlands: Elsevier North-Hollands, 1986, pp. 761-764
  9. A. N. Tikhonov and V. Y. Arsenin, solutions of I ll-posed problems. New York: Willey, 1977.
  10. Lee W. Johnson and R. Dean Riess : "Numerical Analysis, " Addison-Wesley Publishing Company, 1982.
  11. Richard L. Burden, J. Douglas Faires,and Albert C. Reynolds: "Numerical Analysis, " Prindle, Weber & Schmidt Boston, Massachussetts, 1981.
  12. Melvin J. Maron : "Numerical Analysis," Macmillan publishing Co., Inc. New York.
  13. Francis Scheid, "Numerical Analysis, " Schaum's outline series.
  14. J. Biemond, F. G. Von der Putten, and J. W. Woods, "Identifica Tion and restoration of images with symmetric non causal blurs,"IEEE Trans. Circuits Syst., vol. CAS-35, pp385-394, 1988. DOI : 0.1109/31.1753
  15. Satpal singh, S.N. Tandon, "An iterative restoration technique," Signal Processing, Vol. 11, No. 1, pp.1-11, july, 1986 DOI : 10.1016/0165-1684(86)90091-5