References
- Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001). The distribution of realized stock return volatility, Journal of Financial Economics, 61, 43-76. https://doi.org/10.1016/S0304-405X(01)00055-1
- Andersen, T. G. and Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: uncovering the long-run in high frequency returns, The Journal of Finance, 52, 975-1005. https://doi.org/10.1111/j.1540-6261.1997.tb02722.x
- Cho, S. and Shin, D. W. (2016). An integrated heteroscedastic autoregressive model for forecasting realized volatilities, Journal of the Korean Statistical Society, 45, 371-380. https://doi.org/10.1016/j.jkss.2015.12.004
- Corsi, F. (2009). A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics, 7, 174-196.
- Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74, 427-431.
- Ding, Z. and Granger, C. W. (1996). Modeling volatility persistence of speculative returns: a new approach, Journal of Econometrics, 73, 185-215. https://doi.org/10.1016/0304-4076(95)01737-2
- Franses, P. H. and Ghijsels, H. (1999). Additive outliers, GARCH and forecasting volatility, International Journal of Forecasting, 15, 1-9. https://doi.org/10.1016/S0169-2070(98)00053-3
- Franses, P. H. and Haldrup, N. (1994). The effects of additive outliers on tests for unit roots and cointegration, Journal of Business & Economic Statistics, 12, 471-478.
- Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models, Journal of Time Series Analysis, 4, 221-238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
- Kwiatkowski, D., Phillips, P. C., Schmidt, P., and Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?, Journal of Econometrics, 54, 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y
- Lamoureux, C. G. and Lastrapes, W. D. (1990). Persistence in variance, structural change and the GARCH model, Journal of Business and Economic Statistics, 8, 225-234.
- Lin, X., Fei, F., and Wang, Y. (2011). Analysis of the efficiency of the Shanghai stock market: a volatility perspective, Physica A: Statistical Mechanics and its Applications, 390, 3486-3495. https://doi.org/10.1016/j.physa.2011.05.017
- Lobato, I. N. and Velasco, C. (2000). Long memory in stock-market trading volume, Journal of Business & Economic Statistics, 18, 410-427.
- McAleer, M. (2005). Automated inference and learning in modeling financial volatility, Econometric Theory, 21, 232-261.
- Mikosch, T. and Starica, C. (2004). Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects, The Review of Economics and Statistics, 86, 378-390. https://doi.org/10.1162/003465304323023886
- Park, B. J. (2002). An outlier robust GARCH model and forecasting volatility of exchange rate returns, Journal of Forecasting, 21, 381-393. https://doi.org/10.1002/for.827
- Park, S. and Shin, D. W. (2014). Modeling and forecasting realized volatilities of Korean financial assets featuring long memory and asymmetry, Asia-Pacific Journal of Financial Studies, 43, 31-58. https://doi.org/10.1111/ajfs.12039
- Poon, S. H. and Granger, C. (2005). Practical issues in forecasting volatility, Financial Analysts Journal, 61, 45-56.
- Szakmary, A., Ors, E., Kim, J. K., and Davidson, W. N. (2003). The predictive power of implied volatility: evidence from 35 futures markets, Journal of Banking & Finance, 27, 2151-2175. https://doi.org/10.1016/S0378-4266(02)00323-0