• Title/Summary/Keyword: additive outlier

Search Result 8, Processing Time 0.018 seconds

Outlier Detection of Autoregressive Models Using Robust Regression Estimators (로버스트 추정법을 이용한 자기상관회귀모형에서의 특이치 검출)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.305-317
    • /
    • 2006
  • Outliers adversely affect model identification, parameter estimation, and forecast in time series data. In particular, when outliers consist of a patch of additive outliers, the current outlier detection procedures suffer from the masking and swamping effects which make them inefficient. In this paper, we propose new outlier detection procedure based on high breakdown estimators, called as the dual robust filtering. Empirical and simulation studies in the autoregressive model with orders p show that the proposed procedure is effective.

An Improved Iterative Procedure for Outlier Detection in Time Series (시계열 이상치 탐지를 위한 개선된 반복적 절차)

  • Bui, Anh Tuan;Jun, Chi-Hyuck
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • We address some potential problems with the existing procedures of outlier detection in time series. Also we propose modifications in estimating model parameters and outlier effects in order to reduce the number of tests and to increase the detection accuracy. Experiments with some artificial data sets show that the proposed procedure significantly reduces the number of tests and enhances the accuracy of estimated parameters as well as the detection power.

Outlier Detection Diagnostic based on Interpolation Method in Autoregressive Models

  • Cho, Sin-Sup;Ryu, Gui-Yeol;Park, Byeong-Uk;Lee, Jae-June
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.283-306
    • /
    • 1993
  • An outlier detection diagnostic for the detection of k-consecutive atypical observations is considered. The proposed diagnostic is based on the innovational variance estimate utilizing both the interpolated and the predicted residuals. We adopt the interpolation method to construct the proposed diagnostic by replacing atypical observations. The perfomance of the proposed diagnositc is investigated by simulation. A real example is presented.

  • PDF

The Mean Reverting Behavior of Inflation in the Philippines

  • CAMBA, Abraham C. Jr.;CAMBA, Aileen L.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.10
    • /
    • pp.239-247
    • /
    • 2021
  • Central Bank authorities should carefully manage inflation rate uncertainties to achieve economic growth and development not only in the short-run but also in the long-run. Since inflation is a key macroeconomic variable, an increased understanding about its behavior is undoubtedly important. Thus, paper employs unit root with breakpoints to examine the mean reverting behavior of inflation rate in the Philippines using monthly data from 2002 to 2020. Empirically, the unit root breakpoint innovational and additive outlier tests favor the stationarity or mean reverting behavior of inflation in the Philippines. Also, results of standard unit root tests, ADF, PP, GLS-Dickey-Fuller, KPSS and NP, provide strong evidence of mean reverting processes. The mean reverting behavior of inflation rate reveals that the monetary policy using inflation targeting framework has succeeded in reducing chronic inflation persistence in the Philippines. Thus, this research supports inflation targeting policy that aims to maintain general price level stability for the Philippine economy's long-term growth and development prospects. The findings of this research remain important for the central bankers for not only providing them better understanding about the behavior of inflation rate, but also helping them formulate and implement policy reforms related to money, credit and banking.

L-Estimation for the Parameter of the AR(l) Model (AR(1) 모형의 모수에 대한 L-추정법)

  • Han Sang Moon;Jung Byoung Cheal
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.43-56
    • /
    • 2005
  • In this study, a robust estimation method for the first-order autocorrelation coefficient in the time series model following AR(l) process with additive outlier(AO) is investigated. We propose the L-type trimmed least squares estimation method using the preliminary estimator (PE) suggested by Rupport and Carroll (1980) in multiple regression model. In addition, using Mallows' weight function in order to down-weight the outlier of X-axis, the bounded-influence PE (BIPE) estimator is obtained and the mean squared error (MSE) performance of various estimators for autocorrelation coefficient are compared using Monte Carlo experiments. From the results of Monte-Carlo study, the efficiency of BIPE(LAD) estimator using the generalized-LAD to preliminary estimator performs well relative to other estimators.

An outlier-adaptive forecast method for realized volatilities (이상치에 근거한 선택적 실현변동성 예측 방법)

  • Shin, Ji Won;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.323-334
    • /
    • 2017
  • We note that the dynamics of realized volatilities (RVs) are near the boundary between stationarity and non-stationarity because RVs have persistent long-memory and are often subject to fairly large outlying values. To forecast realized volatility, we consider a new method that adaptively use models with and without unit root according to the abnormality of observed RV: heterogeneous autoregressive (HAR) model and the Integrated HAR (IHAR) model. The resulting method is called the IHAR-O-HAR method. In an out-of-sample forecast comparison for the realized volatility datasets of the 3 major indexes of the S&P 500, the NASDAQ, and the Nikkei 225, the new IHAR-O-HAR method is shown superior to the existing HAR and IHAR method.

Outliers and Level Shift Detection of the Mean-sea Level, Extreme Highest and Lowest Tide Level Data (평균 해수면 및 최극조위 자료의 이상자료 및 기준고도 변화(Level Shift) 진단)

  • Lee, Gi-Seop;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.322-330
    • /
    • 2020
  • Modeling for outliers in time series was carried out using the MSL and extreme high, low tide levels (EHL, HLL) data set in the Busan and Mokpo stations. The time-series model is seasonal ARIMA model including the components of the AO (additive outliers) and LS (level shift). The optimal model was selected based on the AIC value and the model parameters were estimated using the 'tso' function (in 'tsoutliers' package of R). The main results by the model application, i.e.. outliers and level shift detections, are as follows. (1) The two AO are detected in the Busan monthly EHL data and the AO magnitudes were estimated to 65.5 cm (by typhoon MAEMI) and 29.5 cm (by typhoon SANBA), respectively. (2) The one level shift in 1983 is detected in Mokpo monthly MSL data, and the LS magnitude was estimated to 21.2 cm by the Youngsan River tidal estuary barrier construction. On the other hand, the RMS errors are computed about 1.95 cm (MSL), 5.11 cm (EHL), and 6.50 cm (ELL) in Busan station, and about 2.10 cm (MSL), 11.80 cm (EHL), and 9.14 cm (ELL) in Mokpo station, respectively.

RPCA-GMM for Speaker Identification (화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델)

  • 이윤정;서창우;강상기;이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.519-527
    • /
    • 2003
  • Speech is much influenced by the existence of outliers which are introduced by such an unexpected happenings as additive background noise, change of speaker's utterance pattern and voice detection errors. These kinds of outliers may result in severe degradation of speaker recognition performance. In this paper, we proposed the GMM based on robust principal component analysis (RPCA-GMM) using M-estimation to solve the problems of both ouliers and high dimensionality of training feature vectors in speaker identification. Firstly, a new feature vector with reduced dimension is obtained by robust PCA obtained from M-estimation. The robust PCA transforms the original dimensional feature vector onto the reduced dimensional linear subspace that is spanned by the leading eigenvectors of the covariance matrix of feature vector. Secondly, the GMM with diagonal covariance matrix is obtained from these transformed feature vectors. We peformed speaker identification experiments to show the effectiveness of the proposed method. We compared the proposed method (RPCA-GMM) with transformed feature vectors to the PCA and the conventional GMM with diagonal matrix. Whenever the portion of outliers increases by every 2%, the proposed method maintains almost same speaker identification rate with 0.03% of little degradation, while the conventional GMM and the PCA shows much degradation of that by 0.65% and 0.55%, respectively This means that our method is more robust to the existence of outlier.