References
- Alvarez, F., Castro, M., Principe, A., Borioli, G., Fischer, S., Mori, G. and Jofre, E. 2011. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J. Appl. Microbiol. 112, 159-174.
- Arrebola, E., Jacobos, R. and Korsten, L. 2009. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108, 386-395.
- Ben-Daniel, B., Bar-Zvi, D. and Tsror (Lahkim), L. 2009. An improved large-scale screening method for assessment of Colletotrichum coccodes aggressiveness using mature green tomatoes. Plant Phathol. 58, 497-503. https://doi.org/10.1111/j.1365-3059.2008.01989.x
- Dev Sharma, S. C., Shovon, M. S., Sarowar Jahan, M. G., Asaduzzaman, A. K. M,, Rahman, M. A., Biswas, K. K., Abe, N. and Roy, N. 2013. Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. J. Microbiol. Biotechnol. Food Sci. 2, 2293-2307.
- Dillard, H. R. 1988. Influence of temperature, pH, osmotic potential, and fungicide sensitivity on germination of conidia and growth from sclerotia of Colletotrichum coccodes in vitro. Phytopathology 78, 1357-1361. https://doi.org/10.1094/Phyto-78-1357
- Jung, Y. H., No, H. K. and Park, C. S. 2014. Screening of microorganism producing chitosanase using trypan blue containing medium and characterization of chitosanase from Bacillus methylotrophicus CH1. J. Chitin Chitosan 19, 188-193.
- Kim, P. I. and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234, 177-183. https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
- Lee, K. J., Park, S. H., Govrthanan, M., Hwang, P. H., Seo, Y. S., Cho, M., Lee, W. H., Lee, J. Y., Kamala-Kannan, S. and Oh, B. T. 2013. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Materials Lett. 105, 128-131. https://doi.org/10.1016/j.matlet.2013.04.076
- Lee, N. R., Woo, G. Y., Jang, J. H., Lee, S. M., Go, T. H., Lee, H. S., Hwan, D. Y. and Son, H. J. 2013. Antioxidant production by Bacillus methylotrophicus isolated from chungkookjang, Korean traditional fermented food. J. Environ. Sci. Internatl. 22, 855-862. https://doi.org/10.5322/JESI.2013.22.7.855
- Lees, A. K. and Hilton, A. J. 2003. Black dot (Colletotrichum coccodes): an increasingly important disease of potato. Plant Pathol. 52, 3-12. https://doi.org/10.1046/j.1365-3059.2003.00793.x
- Madhaiyan, M., Poonguzhali, S., Kwon, S. W. and Sa, T. M. 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60, 2490-2495. https://doi.org/10.1099/ijs.0.015487-0
- Manasi, K., Bhagwat, M. K. and Datar, A. G. 2014. Antifungal activity of herbal extracts against plant pathogenic fungi. Arch. Phytopathol. Plant Protec. 47, 959-965. https://doi.org/10.1080/03235408.2013.826857
- Marais, L. 1990, Efficacy of fungicides against Colletotrichum coccodes on potato tubers, Potato Res. 33, 275-281. https://doi.org/10.1007/BF02358457
- Mehta, P., Walia, A., Kakkar, N. and Shirkot, C. K. 2014. Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol. Plantarum 36, 2033-2045. https://doi.org/10.1007/s11738-014-1581-1
- Mukund, P., Belur, P. D. and Saidutta, M. B. 2014. Production of naringinase from a new soil isolate, Bacillus methylotrophicus: isolation, optimization and scale-up studies. Prepar. Biochem. Biotechnol. 44, 146-209. https://doi.org/10.1080/10826068.2013.797910
-
Niu, Q., Zhang, G., Zhang, L., Ma, Y., Shi, Q. and Fu, W. 2015. Purification and characterization of a thermophilic 1,3-1,4-
${\beta}$ -glucanase from Bacillus methylotrophicus S2 from booklice. J. Biosci. Bioeng. 121, 503-508. - Palaniyandi, S. A., Yang, S. H. and Suh, J. W. 2013. Extracellular proteases from Streptomyces phaeopurpureus ExoPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J. Appl. Microbiol. 115, 207-217. https://doi.org/10.1111/jam.12212
- Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Kor. J. Plant Pathol. 8, 61-69.
-
Peng, Y., Bo, J., Tao, Z., Mu, W., Miao, M. and Hua, Y. 2014. High-level production of poly(
${\gamma}$ -glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Proc. Biochem. 50, 1359-5113. - Shan, H., Zhao, M., Chen D., Cheng J., Li, J., Feng, Z., Ma, Z. and Derong, A. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Protect. 44, 29-37. https://doi.org/10.1016/j.cropro.2012.10.012
- Sharma, S. C. D., Shovon, M. S., Jahan, M. G. S., Asaduzzaman, A. K. M., Rahman, M. A., Biswas, K. K., Abe, N. and Roy, N. 2013. Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. J. Microbiol. Biotechnol. Food Sci. 2, 2293-2307.
- Sim, I., Koh, J. H., Kim, D. J., Gu, S. H., Park, A. and Lim, Y. H. 2014. In vitro assessment of the gastrointestinal tolerance and immunomodulatory function of Bacillus methylotrophicus isolated from a traditional Korean fermented soybean food. J. Appl. Microbiol. 118, 718-744.
-
Sun, P., Hui, C., Wang, S., Khan, R. A., Zhang, Q. and Zhao, Y. H. 2016. Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic
$Fe_3O_4$ nanoparticlesandwheatbran. J. Hazard. Mater. 301, 65-73. https://doi.org/10.1016/j.jhazmat.2015.08.048 - Uribe, E. and Loria, R. 1994. Response of Colletotrichum coccodes to fungicides in vitro. Amer. Potato J. 71, 455-465. https://doi.org/10.1007/BF02849099
- Wang, S. L., Shih, I. L., Liang, T. W. and Wang, C. H. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. Agric. Food Chem. 50, 2241-2248. https://doi.org/10.1021/jf010885d
-
Xie, F., Quan, S., Liu, D., Ma, H., Li F., Zhou, F. and Chen, G. 2013. Purification and characterization of a novel
${\alpha}$ -amylase from a newly isolated Bacillus methylotrophicus strain P11-2. 2013. Proc. Biochem. 49, 47-53. - Yu, G. Y., Sinclair, J. B., Harman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amylolquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34, 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
- Yuan, J., Raza, W, Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubens. Appl. Environ. Microbiol. 78, 5942-5944. https://doi.org/10.1128/AEM.01357-12
- Zhang, T., Li, R., Qian, H., Mu, W., Miao, M. and Jiang, B. 2013. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polymers 101, 975- 1056.
- Zhang, Y., Wang, X. J., Chen, S. Y., Guo, L. Y., Song, M. L., Feng, H., Li, C. and Bai, J. G. 2015. Bacillus methylotrophicus isolated from the cucumber rhizosphere degrades ferulic acid in soil and affects antioxidant and rhizosphere enzyme activities. Plant Soil 392, 309-321. https://doi.org/10.1007/s11104-015-2464-y