DOI QR코드

DOI QR Code

Sleep and Type 2 Diabetes

수면과 2형 당뇨병

  • Lee, Jin-Seong (Department of Neuropsychiatry, Pusan National University Yangsan Hospital) ;
  • Kim, Sung-Gon (Department of Neuropsychiatry, Pusan National University Yangsan Hospital)
  • 이진성 (양산부산대학교병원 정신건강의학과) ;
  • 김성곤 (양산부산대학교병원 정신건강의학과)
  • Received : 2017.06.11
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

Adequate amount and quality of sleep are important for metabolic control in patients with type 2 diabetes. Too short or too long sleep time disrupts glycemic control in both prediabetes and type 2 diabetic patients. Circadian misalignment such as shift work is also associated with an increased risk of developing type 2 diabetes. Clinicians should pay attention to the sleep problems and circadian patterns of patients. However, the pathophysiologic mechanism of the association between sleep and diabetes is likely to be complex and bidirectional. The underlying mechanism remains poorly understood, and further research is warranted.

Keywords

References

  1. Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 2000;21:263-307. https://doi.org/10.1006/frne.2000.0197
  2. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med Rev 2016;30:11-24. https://doi.org/10.1016/j.smrv.2015.10.002
  3. Beihl DA, Liese AD, Haffner SM. Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann Epidemiol 2009;19:351-357. https://doi.org/10.1016/j.annepidem.2008.12.001
  4. Benedict C, Brooks SJ, O'Daly OG, Almen MS, Morell A, Aberg K, et al. Acute sleep deprivation enhances the brain's response to hedonic food stimuli: an fMRI study. J Clin Endocrinol Metab 2012;97:E443-447. https://doi.org/10.1210/jc.2011-2759
  5. Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989;38:1512-1527. https://doi.org/10.2337/diab.38.12.1512
  6. Bosy-Westphal A, Hinrichs S, Jauch-Chara K, Hitze B, Later W, Wilms B, et al. Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes Facts 2008;1:266-273. https://doi.org/10.1159/000158874
  7. Boudjeltia KZ, Faraut B, Stenuit P, Esposito MJ, Dyzma M, Brohee D, et al. Sleep restriction increases white blood cells, mainly neutrophil count, in young healthy men: a pilot study. Vasc Health Risk Manag 2008;4:1467-1470. https://doi.org/10.2147/VHRM.S3934
  8. Boyum A, Wiik P, Gustavsson E, Veiby OP, Reseland J, Haugen AH, et al. The effect of strenuous exercise, calorie deficiency and sleep deprivation on white blood cells, plasma immunoglobulins and cytokines. Scand J Immunol 1996;43:228-235. https://doi.org/10.1046/j.1365-3083.1996.d01-32.x
  9. Broussard J, Brady MJ. The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract Res Clin Endocrinol Metab 2010;24:763-773. https://doi.org/10.1016/j.beem.2010.08.007
  10. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med 2012;157:549-557. https://doi.org/10.7326/0003-4819-157-8-201210160-00005
  11. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes 2010;59:2126-2133. https://doi.org/10.2337/db09-0699
  12. Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF, Wang W, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 2012;4:129ra43.
  13. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2010;33:414-420. https://doi.org/10.2337/dc09-1124
  14. Faraut B, Boudjeltia KZ, Dyzma M, Rousseau A, David E, Stenuit P, et al. Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. Brain Behav Immun 2011;25:16-24. https://doi.org/10.1016/j.bbi.2010.08.001
  15. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A 2010;107:18664-18669. https://doi.org/10.1073/pnas.1008734107
  16. Garaulet M, Esteban Tardido A, Lee YC, Smith CE, Parnell LD, Ordovas JM. SIRT1 and CLOCK 3111T > C combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. Int J Obes (Lond) 2012;36:1436-1441. https://doi.org/10.1038/ijo.2011.270
  17. Grandner MA, Seixas A, Shetty S, Shenoy S. Sleep duration and Diabetes Risk: Population Trends and Potential Mechanisms. Curr Diab Rep 2016;16:106. https://doi.org/10.1007/s11892-016-0805-8
  18. Grassi G, Dell'Oro R, Quarti-Trevano F, Scopelliti F, Seravalle G, Paleari F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005;48:1359-1365. https://doi.org/10.1007/s00125-005-1798-z
  19. Hucking K, Hamilton-Wessler M, Ellmerer M, Bergman RN. Burstlike control of lipolysis by the sympathetic nervous system in vivo. J Clin Invest 2003;111:257-264. https://doi.org/10.1172/JCI14466
  20. Irwin M, Thompson J, Miller C, Gillin JC, Ziegler M. Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J Clin Endocrinol Metab 1999;84:1979-1985.
  21. Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 2006; 166:1756-1762. https://doi.org/10.1001/archinte.166.16.1756
  22. Knutson KL, Ryden AM, Mander BA, Van Cauter E. Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Arch Intern Med 2006;166:1768-1774. https://doi.org/10.1001/archinte.166.16.1768
  23. Knutson KL, Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci 2008; 1129:287-304. https://doi.org/10.1196/annals.1417.033
  24. Knutson KL, Leproult R. Apples to oranges: comparing long sleep to short sleep. J Sleep Res 2010;19(1 Pt 1):118. https://doi.org/10.1111/j.1365-2869.2009.00770.x
  25. Knutson KL, Galli G, Zhao X, Mattingly M, Cizza G, Study NSE. No association between leptin levels and sleep duration or quality in obese adults. Obesity (Silver Spring) 2011;19:2433-2435. https://doi.org/10.1038/oby.2011.248
  26. Knutson KL, Van Cauter E, Zee P, Liu K, Lauderdale DS. Crosssectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care 2011;34:1171-1176. https://doi.org/10.2337/dc10-1962
  27. Langenberg C, Pascoe L, Mari A, Tura A, Laakso M, Frayling TM, et al. Common genetic variation in the melatonin receptor 1B gene (MTNR1B) is associated with decreased early-phase insulin response. Diabetologia 2009;52:1537-1542. https://doi.org/10.1007/s00125-009-1392-x
  28. Lee SW, Ng KY, Chin WK. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: A systematic review and meta-analysis. Sleep Med Rev 2017;31:91-101. https://doi.org/10.1016/j.smrv.2016.02.001
  29. Lucassen EA, Zhao X, Rother KI, Mattingly MS, Courville AB, de Jonge L, et al. Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. PLoS One 2013;8:e56519. https://doi.org/10.1371/journal.pone.0056519
  30. McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. Melatonin secretion and the incidence of type 2 diabetes. JAMA 2013;309:1388-1396. https://doi.org/10.1001/jama.2013.2710
  31. Merikanto I, Lahti T, Puolijoki H, Vanhala M, Peltonen M, Laatikainen T, et al. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int 2013;30:470-477. https://doi.org/10.3109/07420528.2012.741171
  32. Morselli LL, Guyon A, Spiegel K. Sleep and metabolic function. Pflugers Arch 2012;463:139-160. https://doi.org/10.1007/s00424-011-1053-z
  33. Mullington JM, Simpson NS, Meier-Ewert HK, Haack M. Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab 2010;24:775-784. https://doi.org/10.1016/j.beem.2010.08.014
  34. Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 2009;89:126-133. https://doi.org/10.3945/ajcn.2008.26574
  35. Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 2010;153:435-441. https://doi.org/10.7326/0003-4819-153-7-201010050-00006
  36. Ohkuma T, Fujii H, Iwase M, Kikuchi Y, Ogata S, Idewaki Y, et al. Impact of sleep duration on obesity and the glycemic level in patients with type 2 diabetes: the Fukuoka Diabetes Registry. Diabetes Care 2013;36:611-617. https://doi.org/10.2337/dc12-0904
  37. Omisade A, Buxton OM, Rusak B. Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav 2010;99:651-656. https://doi.org/10.1016/j.physbeh.2010.01.028
  38. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med 2011;8:e1001141. https://doi.org/10.1371/journal.pmed.1001141
  39. Peschke E, Muhlbauer E. New evidence for a role of melatonin in glucose regulation. Best Pract Res Clin Endocrinol Metab 2010; 24:829-841. https://doi.org/10.1016/j.beem.2010.09.001
  40. Plat L, Leproult R, L'Hermite-Baleriaux M, Fery F, Mockel J, Polonsky KS, et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning. J Clin Endocrinol Metab 1999;84:3082-3092.
  41. Rafalson L, Donahue RP, Stranges S, Lamonte MJ, Dmochowski J, Dorn J, et al. Short sleep duration is associated with the development of impaired fasting glucose: the Western New York Health Study. Ann Epidemiol 2010;20:883-889. https://doi.org/10.1016/j.annepidem.2010.05.002
  42. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL, et al. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care 2013;36:2523-2529. https://doi.org/10.2337/dc12-2697
  43. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci 2014;1311:151-173. https://doi.org/10.1111/nyas.12355
  44. Reynolds AC, Dorrian J, Liu PY, Van Dongen HP, Wittert GA, Harmer LJ, et al. Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. PLoS One 2012;7:e41218. https://doi.org/10.1371/journal.pone.0041218
  45. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 2009;106:4453-4458. https://doi.org/10.1073/pnas.0808180106
  46. Schmid SM, Hallschmid M, Jauch-Chara K, Born J, Schultes B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 2008;17:331-334. https://doi.org/10.1111/j.1365-2869.2008.00662.x
  47. Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H, et al. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr 2009;90:1476-1482. https://doi.org/10.3945/ajcn.2009.27984
  48. Scott EM, Carter AM, Grant PJ. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 2008;32:658-662. https://doi.org/10.1038/sj.ijo.0803778
  49. Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 2015;38:529-537. https://doi.org/10.2337/dc14-2073
  50. Shearer WT, Reuben JM, Mullington JM, Price NJ, Lee BN, Smith EO, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol 2001;107:165-170. https://doi.org/10.1067/mai.2001.112270
  51. Shechter A, O'Keeffe M, Roberts AL, Zammit GK, RoyChoudhury A, St-Onge MP. Alterations in sleep architecture in response to experimental sleep curtailment are associated with signs of positive energy balance. Am J Physiol Regul Integr Comp Physiol 2012; 303:R883-889. https://doi.org/10.1152/ajpregu.00222.2012
  52. Sparso T, Bonnefond A, Andersson E, Bouatia-Naji N, Holmkvist J, Wegner L, et al. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: studies involving 19,605 Europeans. Diabetes 2009;58:1450-1456. https://doi.org/10.2337/db08-1660
  53. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999;354:1435-1439. https://doi.org/10.1016/S0140-6736(99)01376-8
  54. Spiegel K, Leproult R, L'Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 2004a;89:5762-5771. https://doi.org/10.1210/jc.2004-1003
  55. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 2004b;141:846-850. https://doi.org/10.7326/0003-4819-141-11-200412070-00008
  56. St-Onge MP, Roberts AL, Chen J, Kelleman M, O'Keeffe M, Roy-Choudhury A, et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr 2011;94:410-416. https://doi.org/10.3945/ajcn.111.013904
  57. St-Onge MP, McReynolds A, Trivedi ZB, Roberts AL, Sy M, Hirsch J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am J Clin Nutr 2012;95:818-824. https://doi.org/10.3945/ajcn.111.027383
  58. St-Onge MP. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med 2013;9:73-80.
  59. Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010;137:95-101. https://doi.org/10.1378/chest.09-0791
  60. Suwazono Y, Sakata K, Okubo Y, Harada H, Oishi M, Kobayashi E, et al. Long-term longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers. J Occup Environ Med 2006;48:455-461. https://doi.org/10.1097/01.jom.0000214355.69182.fa
  61. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 2008;105:1044-1049. https://doi.org/10.1073/pnas.0706446105
  62. Tentolouris N, Argyrakopoulou G, Katsilambros N. Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular Med 2008;10:169-178. https://doi.org/10.1007/s12017-008-8022-5
  63. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 2000; 9:335-352. https://doi.org/10.1046/j.1365-2869.2000.00225.x
  64. Trento M, Broglio F, Riganti F, Basile M, Borgo E, Kucich C, et al. Sleep abnormalities in type 2 diabetes may be associated with glycemic control. Acta Diabetol 2008;45:225-229. https://doi.org/10.1007/s00592-008-0047-6
  65. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005;308:1043-1045. https://doi.org/10.1126/science.1108750
  66. Van Leeuwen WM, Lehto M, Karisola P, Lindholm H, Luukkonen R, Sallinen M, et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One 2009;4:e4589. https://doi.org/10.1371/journal.pone.0004589
  67. Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 2004;89:2119-2126. https://doi.org/10.1210/jc.2003-031562
  68. Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, Basta M, et al. Insomnia with short sleep duration and mortality: the Penn State cohort. Sleep 2010;33:1159-1164. https://doi.org/10.1093/sleep/33.9.1159
  69. Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A 2007;104:14412-14417. https://doi.org/10.1073/pnas.0703247104