DOI QR코드

DOI QR Code

Indium-Zinc 산화물 박막 트랜지스터 기반의 N-MOS 인버터

Indium-Zinc Oxide Thin Film Transistors Based N-MOS Inverter

  • 김한상 (충북대학교 전자정보대학) ;
  • 김성진 (충북대학교 전자정보대학)
  • Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2017.01.12
  • 심사 : 2017.04.12
  • 발행 : 2017.07.01

초록

We report on amorphous thin-film transistors (TFTs) with indium zinc oxide (IZO) channel layers that were fabricated via a solution process. We prepared the IZO semiconductor solution with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions. The solution- processed IZO TFTs showed good performance: a field-effect mobility of $7.29cm^2/Vs$, a threshold voltage of 4.66 V, a subthreshold slope of 0.48 V/dec, and a current on-to-off ratio of $1.62{\times}10^5$. To investigate the static response of our solution-processed IZO TFTs, simple resistor load-type inverters were fabricated by connecting a $2-M{\Omega}$ resistor. Our IZOTFTbased N-MOS inverter performed well at operating voltage, and therefore, isa good candidate for advanced logic circuits and display backplane.

키워드

참고문헌

  1. S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, J. Appl. Phys., 90, 2397 (2001). [DOI: https://doi.org/10.1063/1.1389076]
  2. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: https://doi.org/10.1126/science.1083212]
  3. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 89, 112123 (2006). [DOI: https://doi.org/10.1063/1.2353811]
  4. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: https://doi.org/10.1103/physrevlett.85.1012]
  5. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]
  6. D. Macdonald and L. J. Geerligs, Appl. Phys. Lett., 85, 4061 (2004). [DOI: https://dx.doi.org/10.1063/1.1812833]
  7. J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher, IEEE Trans. Electron Dev., 53, 1893 (2006). [DOI: https://doi.org/10.1109/ted.2006.878026]
  8. B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc., 129, 2750 (2007). [DOI: https://doi.org/10.1021/ja068876e]
  9. H. C. Cheng, C. F. Chen, and C. Y. Tsay, Appl. Phys. Lett., 90, 012113 (2007). [DOI: https://doi.org/10.1063/1.2404590]
  10. Y. J. Chang, D. H. Lee, G. S. Herman, and C. H. Chang, Electrochem. Solid-State Lett., 10, H135 (2007). [DOI: https://doi.org/10.1149/1.2666588]
  11. D. Redinger and V. Subramanian, IEEE Trans. Electron Dev., 54, 1301 (2007). [DOI: https://doi.org/10.1109/ted.2007. 895861]
  12. W. B. Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: https://doi.org/10.1063/1.2120895]
  13. C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: https://doi.org/10.1149/1.2800562]
  14. C. Y. Koo, K. K. Song, T. H. Jun, D. J. Kim, Y. M. Jeong, S. H. Kim, J. W. Ha, and J. H. Moon, J. Electrochem. Soc., 157, J111 (2010). [DOI: https://doi.org/10.1149/1.3298886]