DOI QR코드

DOI QR Code

MoS2-Embedded Schottky Photoelectric Devices

MoS2 기반의 쇼트키 반도체 광전소자

  • Ban, Dong-Kyun (Department of Electrical Engineering, Incheon National University) ;
  • Park, Wang-Hee (Department of Electrical Engineering, Incheon National University) ;
  • Jong, Bok-Mahn (Department of Electrical Engineering, Incheon National University) ;
  • Kim, Joondong (Department of Electrical Engineering, Incheon National University)
  • Received : 2017.04.06
  • Accepted : 2017.04.25
  • Published : 2017.07.01

Abstract

A high-performing photoelectric device was realized for the $MoS_2$-embedded Si device. $MoS_2$-coating was performed by an available large-scale sputtering method. The $MoS_2$-layer coating on the p-Si spontaneously provides the rectifying current flow with a significant rectifying ratio of 617. Moreover, the highly optical transmittance of the $MoS_2$-layer provides over 80% transmittance for broad wavelengths. The $MoS_2$-embedded Si photodetector shows the sensitive photo-response for middle and long-wavelength photons due to the functional $MoS_2$-layer, which resolves the conventional limit of Si for long wavelength detection. The functional design of $MoS_2$-layer would provide a promising route for enhanced photoelectric devices, including photovoltaic cells and photodetectors.

Keywords

References

  1. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol, 7, 497 (2013). [DOI: https://doi.org/10.1038/nnano.2013.100]
  2. D. Kufer and G. Konstantatos, Nano Lett., 15, 7307 (2015). [DOI: https://doi.org/10.1021/acs.nanolett.5b02559]
  3. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep., 3, 1866 (2013). [DOI: https://doi.org/10.1038/srep01866]
  4. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. W. Jung, J. Cha, S. Das, D. Xiao, Y. W. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, ACS Nano, 9, 11509 (2015). [DOI: https://doi.org/10.1021/acsnano.5b05556]
  5. J. H. Ryu, G. W. Baek, S. J. Yu, S. G. Seo, and S. H. Jin, IEEE Electron Device Lett., 38, 67 (2017). [DOI: https://doi.org/10.1109/LED.2016.2633479]
  6. S. J. Jeong, S. M. Kim, Y. M. Kang, H. S. Lee, and D. H. Kim, Korean J. Mater. Res., 26, 422 (2016). [DOI : https://doi.org/10.3740/MRSK.2016.26.8.422]
  7. L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, Nano Res., 8, 281 (2015). [DOI: https://doi.org/10.1007/s12274-014-0673-y]
  8. H. S. Kim, M. Patel, H. H. Park, A. Ray, C. Jeong, and J. Kim, ACS Appl. Mater. Interfaces, 8, 8662 (2016). [DOI : https://doi.org/10.1021/acsami.5b12732]
  9. K. M. Kang, J. H. Yun, Y. C. Park, and J. D. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 276 (2014). [DOI: http://dx.doi.org/10.4313/JKEM.2014.27.5.276]
  10. M. D. Kumar, K. K. Kim, and J. D. Kim, Sens. Actuators, A, 223 (2015).
  11. L. Yang, K. Majumdar, H. Liu, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, Nano Lett., 14, 6275 (2014). [DOI: https://doi.org/10.1021/nl502603d]
  12. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, Angew. Chem., Int. Ed., 53, 7860 (2014). [DOI: https://doi.org/10.1002/anie.201402315]
  13. M. Patel, H. S. Kim, and J. D. Kim, Adv. Electron. Mater., 1, 1500232 (2015). [DOI: https://doi.org/10.1002/aelm.201500232]
  14. E. L. Warren, S. W. Boettcher, J. R. McKone and N. S. Lewis, Proc. SPIE Int. Soc. Opt. Eng. (California, USA, 2010) p. 77701.