The Mechanism of Crinum asiaticum var. japonicum on the Activation of Anagen

문주란의 모발 성장기 유도 기전

  • Kang, Jung-Il (Department of Medicine, School of Medicine, Jeju National University) ;
  • Choi, Ju Hwan (Department of Medicine, School of Medicine, Jeju National University) ;
  • Lee, Jong Gun (Department of Medicine, School of Medicine, Jeju National University) ;
  • Yoo, Eun-Sook (Department of Medicine, School of Medicine, Jeju National University) ;
  • Kim, Young Ho (College of Pharmacy, Chungnam National University) ;
  • Kang, Hee-Kyoung (Department of Medicine, School of Medicine, Jeju National University)
  • 강정일 (제주대학교 의학전문대학원 의학과) ;
  • 최주환 (제주대학교 의학전문대학원 의학과) ;
  • 이종건 (제주대학교 의학전문대학원 의학과) ;
  • 유은숙 (제주대학교 의학전문대학원 의학과) ;
  • 김영호 (충남대학교 약학대학) ;
  • 강희경 (제주대학교 의학전문대학원 의학과)
  • Received : 2017.05.29
  • Accepted : 2017.06.19
  • Published : 2017.06.30

Abstract

Crinum asiaticum var. japonicum and its active component, norgalanthamine have been reported to have hair growth-promoting effect via the proliferation of dermal papilla cells. In this study, we investigated the other mechanisms of C. asiaticum extract var. japonicum and norgalanthamine on the hair growth. The C. asiaticum var. japonicum extract inhibited $5{\alpha}$-reductase activity by 16%, which converts testosterone to dihydrotestosterone (DHT), a main cause of androgenetic alopecia, whereas the C. asiaticum var. japonicum extract didn't function as an opener of the $K_{ATP}$ channel. On the other hand, we examined whether norgalanthamine can inhibit transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway, which is essential in the regression induction of hair growth. Norgalanthamine inhibited the phosphorylation of Smad2/3 on TGF-${\beta}1$-induced canonical pathway in human keratinocyte HaCaT cells. These results suggested that the C. asiaticum var. japonicum extract and norgalanthamine had the potential to influence hair growth through the inhibition of $5{\alpha}$-reductase activity and TGF-${\beta}1$-induced canonical pathway.

Keywords

References

  1. Price, V. H. (1999) Treatment of hair loss. N. Engl. J. Med. 341: 964-973. https://doi.org/10.1056/NEJM199909233411307
  2. Ellis, J. A., Sinclair, R. and Harrap, S. B. (2002) Androgenetic alopecia: pathogenesis and potential for therapy. Expert. Rev. Mol. Med. 4: 1-11.
  3. Elliott, K., Stephenson, T. J. and Messenger, A. G. (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J. Invest. Dermatol. 113: 873-877. https://doi.org/10.1046/j.1523-1747.1999.00797.x
  4. Kaufman, K. D. (2002) Androgens and alopecia. Mol. Cell Endocrinol. 198: 89-95. https://doi.org/10.1016/S0303-7207(02)00372-6
  5. Botchkarev, V. A. (2003) Molecular mechanisms of chemotherapy-induced hair loss. J. Investig. Dermatol. Symp. Proc. 8: 72-75. https://doi.org/10.1046/j.1523-1747.2003.12175.x
  6. Batchelor, D. (2001) Hair and cancer chemotherapy: consequences and nursing care-a literature study. Eur. J. Cancer. Care(Engl). 10: 147-163.
  7. Aoki, E., Shibasaki, T. and Kawana, S. (2003) Intermittent foot shock stress prolongs the telogen stage in the hair cycle of mice. Exp. Dermatol. 12: 371-377. https://doi.org/10.1034/j.1600-0625.2002.120403.x
  8. Kaufman, K. D. and Dawber, R. P. (1999) Finasteride, a Type 2 5alpha-reductase inhibitor, in the treatment of men with androgenetic alopecia. Expert. Opin. Investig. Drugs. 8: 403-415. https://doi.org/10.1517/13543784.8.4.403
  9. Messenger, A. G. and Rundegren, J. (2004) Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150: 186-194. https://doi.org/10.1111/j.1365-2133.2004.05785.x
  10. Han, J. H., Kwon, O. S., Chung, J. H., Cho, K. H., Eun, H. C. and Kim, K. H. (2004) Effect of minoxodil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J. Dermatol. Sci. 34: 91-98. https://doi.org/10.1016/j.jdermsci.2004.01.002
  11. Hamaoka, H., Minakuchi, K., Miyoshi, H., Arase, S., Chen, C. H. and Nakaya, Y. (1997) Effect of $K^+$ channel openers on $K^+$ channel in cultured human dermal papilla cells. J. Med. Invest. 44: 73-77.
  12. Shorter, K., Farjo, N. P., Picksley, S. M. and Randall, V. A. (2008) Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J. 22: 1725-1736. https://doi.org/10.1096/fj.07-099424
  13. Kwack, M. H., Kang, B. M., Kim, M. K., Kim, J. C. and Sung, Y. K. (2011) Minoxidil activates beta-catenin pathway in human dermal papilla cells: A possible explanation for its anagen prolongation effect. J. Dermatol. Sci. 62: 154-159. https://doi.org/10.1016/j.jdermsci.2011.01.013
  14. Cotsarelis, G. and Millar, S. E. (2001) Towards a molecular understanding of hair loss and its treatment. Trends. Mol. Med. 7: 293-301. https://doi.org/10.1016/S1471-4914(01)02027-5
  15. Paus, R., Foitzik, K., Welker, P., Bulfone-Paus, S. and Eichmuller, S. (1997) Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling. J. Invest. Dermatol. 109: 518-526. https://doi.org/10.1111/1523-1747.ep12336635
  16. Foitzik, K., Lindner, G., Mueller-Roever, S., Maurer, M., Botchkareva, N., Botchkarev, V., Handjiski, B., Metz, M., Hibino, T., Soma, T., Dotto, G. P. and Paus, R. (2000) Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J. 14: 752-760. https://doi.org/10.1096/fasebj.14.5.752
  17. Li, C. Y., Suardet, L. and Little, J. B. (1995) Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect. J. Biol. Chem. 270: 4971-4974. https://doi.org/10.1074/jbc.270.10.4971
  18. Pardali, K., Kurisaki, A., Moren, A., ten Dijke, P., Kardassis, D. and Moustakas, A. (2000) Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J. Biol. Chem. 275: 29244-29256. https://doi.org/10.1074/jbc.M909467199
  19. Park, S. J., Yang, S. W. and Kim, B. C. (2016) Transforming growth factor-${\beta}$1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells. Biochem. Biophys. Res. Commun. 472: 502-507. https://doi.org/10.1016/j.bbrc.2016.02.121
  20. Cheng, H., Wang, S. and Feng, R. (2016) STIM1 plays an important role in TGF-${\beta}$-induced suppression of breast cancer cell proliferation. Oncotarget.7: 16866-16878.
  21. Gabrielsen, B., Monath, T. P., Huggins, J. W., Kefauver, D. F., Petit, G. R., Groszek, G., Hollingshead, M., Kirsi, J. J., Shannon, W. M., Schubert, E. M., Dake, J. and Ugarkar B (1992) Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances J. Nat. Prod. 55: 1569-1581. https://doi.org/10.1021/np50089a003
  22. Min, B. S., Gao, J. J., Nakamura, N., Kim, Y. H. and Hattori, M. (2001) Cytotoxic alkaloids and a flavan from the bulbs of Crinum asiaticum var. japonicum. Chem. Pharm. Bull(Tokyo). 49: 1217-1219. https://doi.org/10.1248/cpb.49.1217
  23. Kim, Y. H., Park, E. J., Park, M. H., Badarch, U., Woldemichael, G. M. and Beutler, J. A. (2006) Crinamine from Crinum asiaticum var.japonicum inhibits hypoxia inducible factor-1 activity but not activity of hypoxia inducible factor2. Biol Pharm Bull. 29: 2140-2142. https://doi.org/10.1248/bpb.29.2140
  24. Lo'pez, S., Bastida, J., Viladomat, F. and Codina, C. (2002) Acetylcholinesterase activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 71: 2521-2529. https://doi.org/10.1016/S0024-3205(02)02034-9
  25. Kim, S. C., Kang, J. I., Kim, M. K., Hyun, J. H., Boo, H. J., Park, D. B., Lee, Y. J., Yoo, E. S., Kim, Y. H., Kim, Y, H. and Kang, H. K. (2010) Promotion effect of norgalanthamine, a component of Crinum asiaticum, on hair growth. Eur. J. Dermatol. 20: 42-48.
  26. Hyun, J. H., Kang, J. I., Kim, S. C., Kim, E., Kang, J. H., Kwon, J. M., Park, D. B., Lee, Y. J., Yoo, E. S. and Kang, H. K. (2008) The effects of Crinum asiaticum on the apoptosis induction and the reversal of multidrug resistance in HL-60/MX2. Toxicol. Res. 24: 29-36. https://doi.org/10.5487/TR.2008.24.1.029
  27. Picard, F., Schulz, T. and Hartmann, R. W. (2002) 5-phenyl substituted 1-methyl-2-pyridones and 40-substituted biphenyl-4-carboxylic acids. Synthesis and evaluation as inhibitors of steroid-5${\alpha}$-reductase type 1 and 2. Biorg. Med. Chem. 10: 437-448. https://doi.org/10.1016/S0968-0896(01)00293-0
  28. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942.
  29. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  30. Kaufman, K. D., Olsen, E. A., Whiting, D., Savin, R., DeVillez, R., Bergfeld, W., Price, V. H., Van Neste, D., Roberts, J. L., Hordinsky, M., Shapiro, J., Binkowitz, B. and Gormley, G. J. (1998) Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. J. Am. Acad. Dermatol. 39: 578-589. https://doi.org/10.1016/S0190-9622(98)70007-6
  31. Sinclair, R. (1998) Male pattern androgenetic alopecia. BMJ. 317:865-869. https://doi.org/10.1136/bmj.317.7162.865
  32. Olsen, E. A., Hordinsky, M., Whiting, D., Stough, D., Hobbs, S., Ellis, M. L., Wilson, T. and Rittmaster, R. S. (2006) The importance of dual 5alpha-reductase inhibition in the treatment of male pattern hair loss: results of a randomized placebo-controlled study of dutasteride versus finasteride. J. Am. Acad. Dermatol. 55: 1014-1023. https://doi.org/10.1016/j.jaad.2006.05.007
  33. Kumar, N., Rungseevijitprapa, W., Narkkhong, N. A., Suttajit, M. and Chaiyasut, C. (2012) 5${\alpha}$-reductase inhibition and hair growth promotion of some Thai plants traditionally used for hair treatment. J. Ethnopharmacol. 139: 765-771. https://doi.org/10.1016/j.jep.2011.12.010
  34. Murata, K., Noguchi, K., Kondo, M., Onishi, M., Watanabe, N., Okamura, K. and Matsuda, H. (2013) Promotion of hair growth by Rosmarinus officinalis leaf extract. Phytother. Res. 27: 212-217. https://doi.org/10.1002/ptr.4712
  35. Sanders, D. A., Fiddes, I., Thompson, D. M., Philpott, M. P., Westgate, G. E. and Kealey, T. (1996) In the absence of streptomycin, minoxidil potentiates the mitogenic effects of fetal calf serum, insulin-like growth factor 1, and platelet-derived growth factor on NIH 3T3 fibroblasts in a K+ channel-dependent fashion. J. Invest. Dermatol. 107: 229-234. https://doi.org/10.1111/1523-1747.ep12329697
  36. Chiariello, M,, Gomez, E. and Gutkind JS. (2000) Regulation of cyclin-dependent kinase (Cdk) 2 Thr-160 phosphorylation and activity by mitogen-activated protein kinase in late G1 phase. Biochem. J. 349: 869-876. https://doi.org/10.1042/bj3490869
  37. Kang, J. I., Kim, S. C., Hyun, J. H., Kang, J. H., Park, D. B., Lee, Y. J., Yoo, E. S. and Kang HK. (2009) Promotion effect of Schisandra nigra on the growth of hair. Eur. J. Dermatol. 19: 119-125.
  38. Kim, S. C., Kang, J. I., Kim, M. K., Boo, H. J., Park, D. B., Lee, Y. K., Kang, J. H., Yoo, E. S., Kim, Y. H. and Kang, H. K. (2011) The hair growth promoting effect of 4-O-methylhonokiol. Eur. J. Dermatol. 21: 1012-1014.