DOI QR코드

DOI QR Code

Comparison of Filtration Efficiency of Membranes for Harvesting Microalgae using a Gravity-Filtration Device

중력 여과장치 이용 미세조류 수확을 위한 여과막의 효율성 비교

  • Shin, Dong-Woo (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Cho, Yonghee (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Kim, Ki-Hyun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Kim, HanByeol (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Park, Hanwool (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Kim, Z-Hun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Lim, Sang-Min (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (National Marine Bioenergy Research Consortium & Department of Biological Engineering, Inha University)
  • 신동우 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 조용희 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 김기현 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 김한별 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 박한울 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 김지훈 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 임상민 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 이철균 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과)
  • Received : 2017.05.23
  • Accepted : 2017.06.27
  • Published : 2017.06.30

Abstract

Cost-effective microalgae harvesting methods are necessary for economical production of algal biodiesel. In this study, membranes with various pore sizes and materials were examined for their potentials in application to gravity-filtration of Tetraselmis sp. KCTC12432BP. For this test, 10 L of Tetraselmis sp. culture (2 g/L) was loaded on each membrane and filtration rates were measured. Among the tested materials, a woven cotton fabric showed the fastest water drain rate (0.73 L/hr) without serious cell leakage. Cell density of the concentrates after filtration was 6.8 g/L, indicating 3.4-fold concentration compared with the initial algal culture. The result suggests that the woven cotton fabric could serve as filtration membrane for harvesting Tetraselmis sp. among the tested ones.

Keywords

References

  1. Abomohra A. E.-F., Jin W., Tu R., Han S.-F., and Eid M., Eladel H. 2016. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and Perspectives. Renew. Sust. Energ. Rev. 64, 596-606. https://doi.org/10.1016/j.rser.2016.06.056
  2. Barros A. I., Goncalves A. L., Simoes M., and Pires J. C. M. 2015. Harvesting techniques applied to microalgae: A review. Renew. Sust. Energ. Rev. 41, 1489-1500. https://doi.org/10.1016/j.rser.2014.09.037
  3. Cheah W. Y., Ling T. C., Juan J. C., Lee D.-J., Chang J.-S., and Show P. L. 2016. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresour. Technol. 215, 346-356. https://doi.org/10.1016/j.biortech.2016.04.019
  4. Cho Y., Shin D.-W., Lee S., Jeon H., Ryu Y.-J., Lee J.-C., Lim S.-M., and Lee C.-G. 2014. Investigation of microalgal growth, Tetraselmis sp. KCTC12432BP by supplying bicarbonate on the ocean cultivation. J. Mar. Biosci. Biotechnol. 6, 118-122. https://doi.org/10.15433/ksmb.2014.6.2.118
  5. Danquah M. K., Ang L., Uduman N., Moheimani N., and Forde G. M. 2009. Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol., 84 (7), 1078-1083. https://doi.org/10.1002/jctb.2137
  6. Das P., Thaher M. I., Abdul Hakim M. A. Q. M., Al-Jabri H. M. S. J., and Alghasal G. S. H. S. 2016. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresour. Technol. 216, 824-829. https://doi.org/10.1016/j.biortech.2016.06.014
  7. Grima E., Belarbi E. H., Fernandez G. A. Medina A. R., and Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv., 20 (7-8), 491-515. https://doi.org/10.1016/S0734-9750(02)00050-2
  8. Hoffman J., Pate R. C., Drennen T., and Quinn J. C. 2010. Techno-economic assessment of open microalgae production systems. Algal Res. 23, 51-57.
  9. Jones C. S., and Mayfield S. P. 2012. Algae biofuels: Versatility for the future of bioenergy. Curr. Opin. Biotechnol. 23 (3), 346-351. https://doi.org/10.1016/j.copbio.2011.10.013
  10. Mariam A. H., Abdel G., and Amal H. 2015. Microalgae harvesting methods for industrial production of biodiese l: critical review and comparative analysis. J. Fund. Ren ew. Energ. Appl. 5 (2), 154-179.
  11. Michael H., Javier G., Miller T., Beth R., and Stephen M. 2010. Biofuels from algae: challenges and potential. Biofuels 1 (5), 763-784. https://doi.org/10.4155/bfs.10.44
  12. Peperzak L. F., Koeman C. R., Gieskes W. C., and Joord ens J. C. A. 2003. Phytoplankton sinking rates in the Rhine region of freshwater influence. J. Plankton Res. 25 (4), 365-368. https://doi.org/10.1093/plankt/25.4.365
  13. Ramos Tercero E. A., Domenicali G., and Bertucco A. 2014. Autotrophic production of biodiesel from microalg ae: An updated process and economic analysis. Energy 76, 807-815. https://doi.org/10.1016/j.energy.2014.08.077
  14. Reyes J. F., and Labra C. 2016. Biomass harvesting and concentration of microalgae Scenedesmus sp. cultivated in a pilot photobioreactor. Biomass Bioenergy 87, 78-83. https://doi.org/10.1016/j.biombioe.2016.02.014
  15. Semerjian L., and Ayoub G. M. 2003. High-pH-magnes ium coagulation-flocculation in wastewater treatment. Adv. Environ. Res. 7 (2), 389-403. https://doi.org/10.1016/S1093-0191(02)00009-6
  16. Sukenik A., and Shelef G. 1984. Algal autoflocculation -Verification and proposed mechanism. Biotechnol. Bioeng. 26 (2), 142-147. https://doi.org/10.1002/bit.260260206
  17. Shin D.-W., Bae J.-H., Cho Y., Ryu Y.-J., Kim Z-H., Lim S.-M., and Lee C.-G. 2016. Isolation of new microalgae, Tetraselmis sp. KCTC12236BP and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8, 39-44. https://doi.org/10.15433/ksmb.2016.8.1.039
  18. Xin C., Addy M. M., Chao J., Cheng Y., Cheng S., Mu D., Liu Y., Ding R., Chen P., and Ruan R. 2016. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study. Bioresour. Technol. 211, 584-593. https://doi.org/10.1016/j.biortech.2016.03.102