DOI QR코드

DOI QR Code

Experimental study of rainfall spatial variability effect on peak flow variability using a data generation method

자료생성방법을 사용한 강우의 공간분포가 첨두유량의 변동성에 미치는 영향에 대한 실험적 연구

  • Kim, Nam Won (Korea Institute of Civil Engineering and Building Technology) ;
  • Shin, Mun Ju (Korea Institute of Civil Engineering and Building Technology)
  • 김남원 (한국건설기술연구원 수자원.하천연구소) ;
  • 신문주 (한국건설기술연구원 수자원.하천연구소)
  • Received : 2017.03.27
  • Accepted : 2017.04.19
  • Published : 2017.06.30

Abstract

This study generated flood time series of ungauged catchments in the Andongdam catchment using a distributed rainfall-runoff model and data generation method, and extracted the peak flows of 50 catchments to investigate the effect of rainfall spatial variability on peak flow simulation. The model performance statistics for three gauged catchments were reasonable for all events. The flood time series of the 50 catchments were generated using distributed and mean rainfall time series as input. The distribution of the peak flow using the mean rainfall was similar or slightly different to that using the distributed rainfall when the distribution of the distributed rainfall was nearly uniform. However, the distribution of the peak flow using the mean rainfall was reduced significantly compared to that using the distributed rainfall when actual storms moved to the top or bottom of the study catchment, or the rainfall was randomly distributed. These cases were 35% of total number events. Therefore, the spatial variability of rainfall should be considered for flood simulation. In addition, the power law relationship estimated using the peak flow of gauged catchments cannot be used for estimating the peak flow of ungauged independent catchments due to latter's significant variation of the peak flow magnitude.

본 연구에서는 안동댐유역을 대상으로 분포형 모형과 미계측유역 자료생성방법인 공간확장자료 생성방법을 사용하여 47개 미계측유역에 대해 홍수유출 시계열자료를 생성하고 3개 관측유역을 포함한 총 50개 유역에 대해 첨두유량을 추출하여 분석함으로써 강우의 공간분포가 유출에 미치는 영향을 실제유역과 실제사상에 대해 자세히 분석하였다. 20개 사상에 대해 GRM 모형의 매개변수 보정 및 검증결과 적절한 모형효율 통계결과를 얻었다. 이 추정된 매개변수와 실제강우(강우의 공간분포를 고려한 강우) 및 공간평균강우(실제강우를 공간적으로 평균한 강우)를 사용하여 50개 유역의 홍수유출 시계열자료를 생성하였으며 이 시계열 자료 중 첨두유량을 추출하여 분석한 결과 공간평균강우에 의한 첨두유량의 분포는 실제강우에 의한 첨두유량의 분포와 차이가 있었다. 강우의 분포가 유역전반에 비슷한 경우에는 실제강우와 공간평균강우에 의한 첨두유량의 분포가 비슷하거나 약간의 차이가 있었다. 하지만 호우가 상류 또는 하류방향으로 이동하거나 강우가 무작위로 분포되는 경우에는 공간평균강우에 의한 첨두유량의 분포가 실제강우에 의한 첨두유량의 분포보다 크게 좁아지는 것을 보였다. 이러한 사상의 비율을 조사한 결과 강우의 공간적 변동성을 고려하지 않고 홍수유출을 모의한다면 약 35%의 사상에 대해서는 적절하지 않은 첨두유량 모의결과를 얻을 수 있는 것으로 조사되었다. 따라서 홍수량 산정 또는 수자원 설계 시 강우의 시간분포 뿐만 아니라 공간분포 또한 고려해야 한다. 계측유역과 미계측유역의 첨두유량의 관계를 조사한 결과 낙동강 지류들에 위치한 미계측유역들의 첨두유량들은 그 크기가 넓게 분포됨에 따라 계측유역의 첨두유량을 사용하여 생성한 power law 관계를 이 미계측유역들의 첨두유량 추정 시 사용할 수 없었다. 또한 계측유역들의 첨두유량 또는 미계측유역 중 상하류로 연결된 비독립적인 소유역들의 첨두유량간에는 power law 가 존재하였으나 낙동강 지류들에 위치한 독립된 소유역들의 첨두유량들 간에는 상관관계가 없었다.

Keywords

References

  1. Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R. (2002). "Influence of rainfall spatial variability on flood prediction." Journal of Hydrology, Vol. 260, No. 1, pp. 216-230. https://doi.org/10.1016/S0022-1694(01)00611-4
  2. Bathurst, J. C. (1986). "Sensitivity analysis of the Systeme Hydrologique Europeen for an upland catchment." Journal of Hydrology, Vol. 87, No. 1, pp. 103-123. https://doi.org/10.1016/0022-1694(86)90117-4
  3. Beven, K. (1981). "Kinematic subsurface stormflow." Water Resources Research, Vol. 17, No. 5, pp. 1419-1424. https://doi.org/10.1029/WR017i005p01419
  4. Choi, Y. S., Choi, C. K., Kim, H. S., Kim, K. T., and Kim, S. (2015). "Multi-site calibration using a grid-based event rainfall-runoff model: a case study of the upstream areas of the Nakdong River basin in Korea." Hydrological Processes, Vol. 29, No. 9, pp. 2089-2099. https://doi.org/10.1002/hyp.10355
  5. Faures, J. M., Goodrich, D. C., Woolhiser, D. A., and Sorooshian, S. (1995). "Impact of small-scale spatial rainfall variability on runoff modeling." Journal of Hydrology, Vol. 173, No. 1, pp. 309-326. https://doi.org/10.1016/0022-1694(95)02704-S
  6. Freeze, R. A., and Cherry, J. A. (1979). Groundwater. Prentice Hall, New Jersey, pp. 15-236.
  7. Gupta, H. V., Sorooshian, S., and Yapo, P. O. (1999). "Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration." Journal of Hydrologic Engineering, Vol. 4, No. 2, pp. 135-143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
  8. Jung, Y., Kim, N. W., and Lee, J. E. (2015). "Dam effects on spatial extension of flood discharge data and flood reduction scale II." Journal of Korea Water Resources Association, Vol. 48, No. 3, pp. 221-231. https://doi.org/10.3741/JKWRA.2015.48.3.221
  9. Kim, N. W., Jung, Y., and Lee, J. E. (2013). "Spatial extension of runoff data in the applications of a lumped concept model." Journal of Korea Water Resources Association, Vol. 46, No. 9, pp. 921-932. https://doi.org/10.3741/JKWRA.2013.46.9.921
  10. Kim, N. W., Jung, Y., and Lee, J. E. (2014). "Simulation conditions based characteristics of spatial flood data extension." Journal of Korea Water Resources Association, Vol. 47, No. 6. pp. 501-511. https://doi.org/10.3741/JKWRA.2014.47.6.501
  11. Kim, N. W., Jung, Y., and Lee, J. E. (2015). "Dam effects on spatial extension of flood discharge data and flood reduction scale I." Journal of Korea Water Resources Association, Vol. 48, No. 3, pp. 209-220. https://doi.org/10.3741/JKWRA.2015.48.3.209
  12. Kim, N. W., Lee, J. E., Lee, J. W., and Jung, Y. (2016a). "Regional-frequency analysis using spatial data extension method: I. An empirical investigation of regional flood frequency analysis." Journal of Korea Water Resources Association, Vol. 49, No. 5, pp. 439-450. https://doi.org/10.3741/JKWRA.2016.49.5.439
  13. Kim, N. W., Lee, J. E., Lee, J. W., and Jung, Y. (2016b). "Regional-frequency analysis using spatial data extension method: II. Flood frequency inference for ungaged watersheds." Journal of Korea Water Resources Association, Vol. 49, No. 5, pp. 451-458. https://doi.org/10.3741/JKWRA.2016.49.5.451
  14. Klemes, V. (1986) "Operational testing of hydrological simulation models." Hydrological Sciences Journal, Vol. 31, No. 1, pp. 13-24. https://doi.org/10.1080/02626668609491024
  15. Krause, P., Boyle, D. P., and Base, F. (2005). "Comparison of different efficiency criteria for hydrological model assessment." Advances in Geosciences, Vol. 5, pp. 89-97. https://doi.org/10.5194/adgeo-5-89-2005
  16. Lee, G. H., Lee, K. H., Jung, K. S., and Jang, C. L. (2012). "Analysis on the effect of spatial distribution of rainfall on soil erosion and deposition." Journal of Korea Water Resources Association, Vol. 45, No. 7, pp. 657-674. https://doi.org/10.3741/JKWRA.2012.45.7.657
  17. Lee, J. T., and Lee, S. T. (1997). "The effects on the characteristics of urban storm runoff due to the space allocation of design rainfall and the partition of the subbasin." Journal of Korea Water Resources Association, Vol. 30, No. 2, pp. 177-191.
  18. Legates, D. R., and McCabe, G. J. (1999). "Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation." Water Resources Research, Vol. 35, No. 1, pp. 233-241. https://doi.org/10.1029/1998WR900018
  19. Lopes, V. L. (1996). "On the effect of uncertainty in spatial distribution of rainfall on catchment modelling." Catena, Vol. 28, No. 1, pp. 107-119. https://doi.org/10.1016/S0341-8162(96)00030-6
  20. McCuen, R. H., and Snyder, W. M. (1975). "A proposed index for comparing hydrographs." Water Resources Research, Vol. 11, No. 6, pp. 1021-1024. https://doi.org/10.1029/WR011i006p01021
  21. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Hrmel, R. D., and Veith, T. L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  22. Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  23. Obled, C., Wendling, J., and Beven, K. (1994). "The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data." Journal of hydrology, Vol. 159, No. 1-4, pp. 305-333. https://doi.org/10.1016/0022-1694(94)90263-1
  24. Pegram, G., and Parak, M. (2004). "A review of the regional maximum flood and rational formula using geomorphological information and observed floods." Water SA, Vol. 30, No. 3, pp. 377-392.
  25. Segond, M. L., Wheater, H. S., and Onof, C. (2007). "The significance of spatial rainfall representation for flood runoff estimation: a numerical evaluation based on the Lee catchment, UK." Journal of Hydrology, Vol. 347, No. 1, pp. 116-131. https://doi.org/10.1016/j.jhydrol.2007.09.040
  26. Singh, V. P. (1997). "Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph." Hydrological Processes, Vol. 11, No. 12, pp. 1649-1669. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1
  27. Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Reed, S. M., Cui, Z., Moreda, F., Cosgrove, B. A., Mizukami, N., and Anderson, E. A. (2012). "Results of the DMIP 2 Oklahoma experiments." Journal of hydrology, Vol. 418-419, pp. 17-48. https://doi.org/10.1016/j.jhydrol.2011.08.056
  28. Tewolde, M. H., and Smithers, J. C. (2007). "Flood routing in ungauged catchments using Muskingum methods." Water SA, Vol. 32, No. 3, pp. 379-388.