DOI QR코드

DOI QR Code

전자 사이클로트론 공명 플라즈마와 열 원자층 증착법으로 제조된 Al2O3 박막의 물리적·전기적 특성 비교

Electrical Properties of Al2O3 Films Grown by the Electron Cyclotron Resonance Plasma-Enhanced Atomic Layer Deposition (ECR-PEALD) and Thermal ALD Methods

  • 양대규 (충남대학교 신소재공학과) ;
  • 김양수 (충남대학교 신소재공학과) ;
  • 김종헌 (충남대학교 신소재공학과) ;
  • 김형도 (충남대학교 신소재공학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Yang, Dae-Gyu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Yang-Soo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Jong-Heon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyoung-Do (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • 투고 : 2016.11.11
  • 심사 : 2017.04.11
  • 발행 : 2017.06.27

초록

Aluminum-oxide($Al_2O_3$) thin films were deposited by electron cyclotron resonance plasma-enhanced atomic layer deposition at room temperature using trimethylaluminum(TMA) as the Al source and $O_2$ plasma as the oxidant. In order to compare our results with those obtained using the conventional thermal ALD method, $Al_2O_3$ films were also deposited with TMA and $H_2O$ as reactants at $280^{\circ}C$. The chemical composition and microstructure of the as-deposited $Al_2O_3$ films were characterized by X-ray diffraction(XRD), X-ray photo-electric spectroscopy(XPS), atomic force microscopy(AFM) and transmission electron microscopy(TEM). Optical properties of the $Al_2O_3$ films were characterized using UV-vis and ellipsometry measurements. Electrical properties were characterized by capacitance-frequency and current-voltage measurements. Using the ECR method, a growth rate of 0.18 nm/cycle was achieved, which is much higher than the growth rate of 0.14 nm/cycle obtained using thermal ALD. Excellent dielectric and insulating properties were demonstrated for both $Al_2O_3$ films.

키워드

참고문헌

  1. S. -J. Seong, D. -J. Kim, Y. -H. Bae, J. -H. Lee and Y. -H. Lee, J. Semicond. Sci. Technol., 2, 185 (2001).
  2. X. Ding, J. Zhang, J. Li, W. Shi, H. Zhang, X. Jiang and Z. Zhang, Superlattice Microst., 69, 204 (2014). https://doi.org/10.1016/j.spmi.2014.02.001
  3. W. Jeon, H. S. Chung, D. Joo and S. W. Kang, Electrochem. Solid-State Lett., 11, H19 (2008). https://doi.org/10.1149/1.2813881
  4. J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh and J. H. Lee, J. Appl. Phys., 92, 6739 (2002). https://doi.org/10.1063/1.1515951
  5. S. Yokoyama, K. Ohba and A. Nakajima, Appl. Phys. Lett., 79, 617 (2001). https://doi.org/10.1063/1.1389508
  6. M. Ritala and M. Leskela, Handbook of Thin Film Materials (ed., H. S. Nalwa), Vol. 1 (2002).
  7. A. C. Kozen, M. A. Schroeder, K. D. Osborn, C. J. Lobb and G. W. Rubloff, Appl. Phys. Lett., 102, 173501 (2013). https://doi.org/10.1063/1.4801979
  8. J. Koo, Y. Kim and H. Jeon, Jpn. J. Appl. Phys., 41, 3043 (2002). https://doi.org/10.1143/JJAP.41.3043
  9. Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon and C. -G. Park, J. Appl. Phys., 92, 5443 (2002). https://doi.org/10.1063/1.1513196
  10. Y. Xiong, L. Sang, Q. Chen, L. Yang, Z. Wang and Z. Liu, Plasma Sci. Technol., 15, 52 (2013). https://doi.org/10.1088/1009-0630/15/1/09
  11. J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida and D. Schmeisser, Beilstein J. Nanotechnol., 4, 732 (2013). https://doi.org/10.3762/bjnano.4.83