DOI QR코드

DOI QR Code

Removal of Basic Dye from Aqueous Solution using Coal-based Granular Activated Carbon

석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거

  • Choi, Han Ah (Department of Marine Environmental Engineering and Institute of Marine Industry, Gyeongsang National University) ;
  • Park, Ha Neul (Department of Ocean System Engineering, Gyeongsang National University) ;
  • Moon, Hye Woon (Department of Marine Environmental Engineering and Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Eun Bin (Department of Marine Environmental Engineering and Institute of Marine Industry, Gyeongsang National University) ;
  • Jang, Yeon Woo (Department of Marine Environmental Engineering and Institute of Marine Industry, Gyeongsang National University) ;
  • Won, Sung Wook (Department of Marine Environmental Engineering and Institute of Marine Industry, Gyeongsang National University)
  • 최한아 (경상대학교 해양환경공학과 해양산업연구소) ;
  • 박하늘 (경상대학교 해양시스템공학과) ;
  • 문혜원 (경상대학교 해양환경공학과 해양산업연구소) ;
  • 김은빈 (경상대학교 해양환경공학과 해양산업연구소) ;
  • 장연우 (경상대학교 해양환경공학과 해양산업연구소) ;
  • 원성욱 (경상대학교 해양환경공학과 해양산업연구소)
  • Received : 2016.11.01
  • Accepted : 2017.01.20
  • Published : 2017.06.30

Abstract

This research studied the adsorption of basic dye, Basic Blue 3 (BB3) by using coal-based granular activated carbon (C-GAC) from aqueous solution. All experiments were performed in batch processes, and adsorption parameters such as C-GAC dosage, contact time, initial dye concentration and temperature were evaluated. The removal efficiency of BB3 was increased with increasing the C-GAC dosage and 100% of initial concentration, $50mg\;L^{-1}$ was removed above 0.2 g of C-GAC. Also, the time to reach equilibrium depended on the initial dye concentration. According to the Langmuir model, the maximum uptakes of C-GAC were calculated to be 66.45, 84.97 and $87.19mg\;g^{-1}$ at 25, 35 and $45^{\circ}C$, respectively. In addition, thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were investigated.

본 연구에서는 석탄계 입상활성탄을 이용하여 수용액으로부터 염기성 염료 Basic Blue 3 (BB3)의 흡착에 대해 조사하였다. 모든 실험은 회분공정에서 수행하였고, 활성탄의 투입량, 접촉시간, 초기농도 및 온도와 같은 흡착변수들에 대해 평가하였다. 활성탄의 투입량이 증가할수록 BB3 제거율도 증가하였으며, 활성탄 0.2 g 이상에서 초기농도 $50mg\;L^{-1}$의 BB3가 100% 제거되었다. 또한, 흡착평형에 도달하는 시간은 염료의 초기농도에 의존적이었다. Langmuir 모델에 따르면, 석탄계 입상활성탄의 최대흡착량은 25, 35, $45^{\circ}C$에서 66.45, 84.97, $87.19mg\;g^{-1}$으로 산출되었다. 그리고 Gibbs 자유에너지 변화량, 엔탈피 변화량, 엔트로피 변화량과 같은 열역학적 변수들에 대해 평가하였다.

Keywords

References

  1. Gholivand, M. B., Yamini, Y., Dayeni, M., and Seidi, S., "Removal of Methylene Blue and Neutral Red from Aqueous Solutions by Surfactant-Modified Magnetic Nanoparticles as Highly Efficient Adsorbent," Environ. Prog. Sustain., 34, 1683-1693 (2015). https://doi.org/10.1002/ep.12174
  2. Hameed, B. H., Mahmoud, D. K., and Ahmad, A. L., "Sorption of Basic Dye from Aqueous Solution by Pomelo (Citrus grandis) Peel in A Batch System," Colloid Surf. A-Physicochem. Eng. Asp., 316(1), 78-87 (2008). https://doi.org/10.1016/j.colsurfa.2007.08.033
  3. Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., and Forsythe, S., "The Toxicity of Textile Reactive Azo Dyes after Hydrolysis and Decolourisation," J. Biotechnol., 101(1), 49-56 (2003). https://doi.org/10.1016/S0168-1656(02)00302-4
  4. Aksu, Z., "Application of Biosorption for the Removal of Organic Pollutants: A Review," Process Biochem., 40(3), 997-1026 (2005). https://doi.org/10.1016/j.procbio.2004.04.008
  5. Ho, Y. S., and McKay, G., "Sorption of Dyes and Copper Ions onto Biosorbents," Process Biochem., 38(7), 1047-1061 (2003). https://doi.org/10.1016/S0032-9592(02)00239-X
  6. Turabik, M., "Adsorption of Basic Dyes from Single and Binary Componet Systems onto Bentonite: Simultaneous Analysis of Basic Red 46 and Basic Yellow 28 by First Order Derivative Spectrophotometric Analysis Method," J. Hazard. Mater., 158(1), 52-64 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.033
  7. Mahmoud, D. K., Salleh, M. A. M., Karim, W. A. W. A., Idris, A., and Abidin, Z. Z., "Batch Adsorption of Basic Dye Using Acid Treated Kenaf Fibre Char: Equilibrium, Kinetic and Thermodynamic Studies," Chem. Eng. J., 181-182, 449-457 (2012). https://doi.org/10.1016/j.cej.2011.11.116
  8. Chan, S. L., Tan, Y. P., Abdullah, A. H., and Ong, S. T., "Equilibrium, Kinetic and Thermodynamic Studies of a New Potential Biosorbent for the Removal of Basic Blue 3 and Congo Red Dyes: Pineapple (Ananas comosus) Plant Stem," J. Taiwan Inst. Chem. Eng., 61, 306-315 (2016). https://doi.org/10.1016/j.jtice.2016.01.010
  9. Allen, S. J., Mckay, G., and Porter, J. F., "Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems," J. Colloid Interface Sci., 280(2), 332-333 (2004).
  10. Eldien, I. M., Al-Sarawy, A. A., El-Halwany, M. M., and El-Msaly, F. R., "Kinetics and Thermodynamics Evaluation of Activated Carbon Derived from Peanuts Shell as a Sorbent Material," J. Chem. Eng. Process Technol., 7, 267 (2016).
  11. Saygili, H., and Güzel, F., "High Surface Area Mesoporous Activated Carbon from Tomato Processing Solid Waste by Zinc Chloride Activation: Process Optimization, Characterization and Dyes Adsorption," J. Clean Prod., 113, 995-1004 (2016). https://doi.org/10.1016/j.jclepro.2015.12.055
  12. Li, C., Zhang, L., Xia, H., Peng, J., Zhang, S., Cheng, S., and Shu, J., "Kinetics and Isotherms Studies for Congo Red Adsorption on Mesoporous Eupatorium adenophorum-based Activated Carbon Via Microwave-Induced $H_3PO_4$ Activation," J. Mol. Liq., 224, 737-744 (2016). https://doi.org/10.1016/j.molliq.2016.10.048
  13. Kim, H. Y., Son, J. Y., Rhee, S. W., and Kim, D. S., "The Adsorption Feature of Dye Wastewater with Basic Yellow 2 and Acid Red 88 onto Granular Activated Carbon," KSWST Jour. Wat. Treat., 33(2), 13-26 (2015).
  14. Abussaud, B., Asmaly, H. A., Saleh, T. A., Gupta, V. K., and Atieh, M. A., "Sorption of Phenol from Waters on Activated Carbon Impregnated with Iron Oxide, Aluminum Oxide and Titanium Oxide," J. Mol. Liq., 213, 351-359 (2016). https://doi.org/10.1016/j.molliq.2015.08.044
  15. Tan, I. A. W., Ahmad, A. L., and Hameed, B. H., "Adsorption of Basic Dye Using Activated Carbon Prepared from Oil Palm Shell: Batch and Fixed Bed Studies," Desalination, 225(1), 13-28 (2008). https://doi.org/10.1016/j.desal.2007.07.005
  16. Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V., and Krimissa, M., "Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement," Appl. Geochem., 22(2), 249-275 (2007). https://doi.org/10.1016/j.apgeochem.2006.09.010
  17. Tan, I. A. W., Ahmad, A. L., and Hameed, B. H., "Adsorption of Basic Dye on High-Surface-Area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies," J. Hazard. Mater., 154(1), 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  18. Barka, N., Ouzaouit, K., Abdennouri, M., and El Makhfouk, M., "Dried Prickly Pear Cactus (Opuntia ficus indica) Cladodes as a Low-Cost and Eco-Friendly Biosorbent for Dyes Removal from Aqueous Solutions," J. Taiwan Inst. Chem. Eng., 44(1), 52-60 (2013). https://doi.org/10.1016/j.jtice.2012.09.007
  19. Haghseresht, F., and Lu, G. Q., "Adsorption Characteristics of Phenolic Compounds onto Coal-Reject-Derived Adsorbents," Energy Fuels, 12(6), 1100-1107 (1998). https://doi.org/10.1021/ef9801165
  20. Fytianos, K., Voudrias, E., and Kokkalis, E., "Sorption-Desorption Behaviour of 2, 4-dichlorophenol by Marine Sediments," Chemosphere, 40(1), 3-6 (2000). https://doi.org/10.1016/S0045-6535(99)00214-3
  21. dos Santos, A., Viante, M. F., dos Anjos, P. P., Naidek, N., Moises, M. P., de Castro, E. G., Downs, A. J., and Almeida, C. A. P., "Removal of Astrazon Blue Dye from Aqueous Media by a Low-Cost Adsorbent from Coal Mining," Desalin. Water Treat., 57(56), 27213-27225 (2016). https://doi.org/10.1080/19443994.2016.1167627
  22. Chu, H. C., and Chen, K. M., "Reuse of Activated Sludge Biomass: I. Removal of Basic Dyes from Wastewater by Biomass," Process Biochem., 37(6), 595-600 (2002). https://doi.org/10.1016/S0032-9592(01)00234-5
  23. Kim, S. Y., Jin, M. R., Chung, C. H., Yun, Y. S., Jahng, K. Y., and Yu, K. Y., "Biosorption of Cationic Basic Dye and Cadmium by the Novel Biosorbent Bacillus catenulatus JB-022 Strain," J. Biosci. Bioeng., 119(4), 433-439 (2015). https://doi.org/10.1016/j.jbiosc.2014.09.022
  24. Ong, S. T., Tan, S. Y., Khoo, E. C., Lee, S. L., and Ha, S. T., "Equilibrium Studies for Basic Blue 3 Adsorption onto Durian Peel (Durio zibethinus Murray)," Desalin. Water Treat., 45(1-3), 161-169 (2012). https://doi.org/10.1080/19443994.2012.692037
  25. Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H., and Walker, G. M., "Effect of Solution pH, Ionic Strength, and Temperature on Adsorption Behavior of Reactive Dyes on Activated Carbon," Dyes Pigment., 77(1), 16-23 (2008). https://doi.org/10.1016/j.dyepig.2007.03.001
  26. Jong, J. L., "Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Rhodamin-B onto Granular Activated Carbon," Appl. Chem. Eng., 27(2), 199-204 (2016). https://doi.org/10.14478/ace.2016.1015
  27. Dogan, M., Alkan, M., Demirbas, O., Ozdemir, Y., and Ozmetin, C., "Adsorption Kinetics of Maxilon Blue GRL onto Sepiolite from Aqueous Solutions," Chem. Eng. J., 124(1), 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  28. Ghaedi, M., Hossainian, H., Montazerozohori, M., Shokrollahi, A., Shojaipour, F., Soylak, M., and Purkait, M. K., "A Novel Acorn Based Adsorbent for the Removal of Brilliant Green," Desalination, 281, 226-233 (2011). https://doi.org/10.1016/j.desal.2011.07.068
  29. Ryoo, K. S., Hong, Y. P., and Ahn, C. J., "A Comparative Study on Adsorption Characteristics of PCBs in Transformer Oil Using Various Adsorbents," J. Korean Chem. Soc., 56(6), 692-699 (2012). https://doi.org/10.5012/jkcs.2012.56.6.692