DOI QR코드

DOI QR Code

HIT PV Module Performance Research for an Improvement of Long-term Reliability: A Review

  • Park, Hyeong Sik (Electronics Convergence Materials & Devices Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Jeong, Jae-Seong (Electronics Convergence Materials & Devices Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Park, Chang Kyun (Crystalline Part, JUSUNG Engineering Co. Ltd.) ;
  • Lim, Kyung Jin (Crystalline Part, JUSUNG Engineering Co. Ltd.) ;
  • Shin, Won Seok (Crystalline Part, JUSUNG Engineering Co. Ltd.) ;
  • Kim, Yong Jun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kang, Jun Young (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Young Kuk (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, No Chang (Electronics Convergence Materials & Devices Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Nam, Sang-Hun (Department of Chemistry, Sungkyunkwan University) ;
  • Boo, Jin-Hyo (Department of Chemistry, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2017.03.12
  • Accepted : 2017.03.25
  • Published : 2017.06.30

Abstract

We report finding ways to improve the long-term reliability of PV module including the heterostructure with the intrinsic thin layer (HIT) solar cell. We point out the stability of the products of Panasonic HIT cell. We account for a brief description of the module manufacturing process to investigate the issues of each process and analyze the causes. We carried out the silicon PV module of the glass to glass type under the damp heat test around 1000 hours. However, it degraded around 7% of PV module power after 300 hours exposure in comparison with the initial status (Initial: 12.7 Watt). We investigated possible cause and solutions for the module performance to develop the long-term reliability.

Keywords

References

  1. Moheimani N. R., and Parlevliet D., "Sustainable solar energy conversion to chemical and electrical energy," Renew. Sustain. Energy Rev. Vol. 27, pp. 494-504, 2013. https://doi.org/10.1016/j.rser.2013.07.006
  2. Xu M., "Trina Solar Announces New Efficiency Record of 22.61% for Mono-Crystalline Silicon PERC Cell", and visit (http://www.prnewswire.com/news-releases/trina-solar-announces-new-effici ency-record-of-2261-for-mono-crystalline-silicon-perc-cell-300380906.html), Source from Trina Solar Limited.
  3. "SunPower lab produced solar cells used in 24.1% module efficiency record", source from PVTECH homepage, and visit (http://www.pv-tech.org/news/sunpower-lab-produced-solar-cells-used-in-24.1-module-efficiency-record).
  4. Green M. A., Emery K., Hishikawa Y., Warta W., Dunlop E. D., Levi D. H., and Baillie A. W. Y. H., Solar cell efficiency tables (version 49), Prog. Photovoltaics Vol. 25, No. 1, pp. 3-13, 2017. https://doi.org/10.1002/pip.2855
  5. "Kaneka achieves new efficiency record for a practical size crystalline silicon PV cell," a source from PV Magazine and visit (https://www.pv-magazine.com/2016/09/19/kaneka-achieves-new-efficiency-record-for-a-practical-size-crystalline-silicon-pv-cell_100026182/).
  6. Jian Yu, J., Bian J., Liu Y., Meng F., and Liu Z., "Patterning and formation of copper electroplated contact for bifacial silicon hetero-junction solar cell," Sol. Energy Vol. 146, pp.44-49, 2017. https://doi.org/10.1016/j.solener.2017.02.022
  7. Valla, A., Carroy P., Ozanne F., and Munoz D., "Understanding the role of mobility of ITO films for silicon heterojunction solar cell applications," Sol. Energy Mater. Sol. Cells Vol. 157, pp. 874-880, 2016. https://doi.org/10.1016/j.solmat.2016.08.002
  8. Chen D., Zhao L., Diao H., Zhang W., Wang G., and Wang W., "Choice of the low-temperature sintering Ag paste for a-Si:H/c-Si heterojunction solar cell based on characterizing the electrical performance," J. Alloys Compounds Vol. 618, pp. 357-365, 2015. https://doi.org/10.1016/j.jallcom.2014.08.175
  9. Yamaguchi S., Yamamoto C., Ohdaira K., and Masuda A., "Reduction in the short-circuit current density of silicon heterojunction photovoltaic modules subjected to potential-induced degradation tests," Sol. Energy Mater. Sol. Cells Vol. 161, pp.439-443, 2017. https://doi.org/10.1016/j.solmat.2016.12.027
  10. Davis K. O., Rodgers M. P., Scardera G., Brooker R. P., Seigneur H., Mohajeri N., Dhere N. G., Wohlgemuth J., Schneller E., Shiradkar N., Rudack A. C., and Schoenfeld W. V., Renew. Sustain. Energy Rev. Vol. 59, pp. 225-252, 2016. https://doi.org/10.1016/j.rser.2015.12.217
  11. Mishima T., Taguchi M., Sakata H., and Maruyama E., "Development status of high-efficiency HIT solar cells," Sol. Energy Mater. Sol. Cells Vol. 95, pp. 18-21, 2011. https://doi.org/10.1016/j.solmat.2010.04.030
  12. Renewables 2016 Global status Reports.
  13. Fraunhofer Institute for Solar Energy Systems, ISE with the support of PSE AG, "Photovoltaics Report.", 2016.
  14. Beaucarne G., Schubert G., Tous L., and Hoornstra J., "Summary of the 6th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells", Energy Proc. Vol. 98, pp. 2-11, 2016. https://doi.org/10.1016/j.egypro.2016.10.089
  15. Asadpour R, Chavali R. V. K., and Alam M. A., "Physics-Based Computational Modeling of Moisture Ingress in Solar Modules: Location-Specific Corrosion and Delamination," IEEE PVSC 2016, pp. 0840-0843.
  16. Chebotareva A.B., Untila G.G., Kost T.N., Stepanov A.S., Salazkin S.N., and Shaposhnikova V.V., "Transparent conductive polymers for laminated multi-wire metallization of bifacial concentrator crystalline silicon solar cells with TCO layers," Sol. Energy Mater. Sol. Cells Vol. 165, pp. 1-8, 2017. https://doi.org/10.1016/j.solmat.2017.02.025
  17. Beaucarne G., Schubert G., Tous L., and Hoornstra J., "Summary of the 5th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells", Energy Proc. Vol. 67, pp. 2-12, 2015. https://doi.org/10.1016/j.egypro.2015.03.282
  18. Bartsch, J., Mondon A., Bayer K., Schetter C., Hörteis M., and Glunz S. W., "Quick Determination of Copper-Metallization Long-Term Impact on Silicon Solar Cells," J. Electrochem. Soc. Vol. 157, No. 10, pp. H942-H946, 2010.
  19. Roy J.N., "Comprehensive analysis and modeling of the cell to module (CTM) conversion loss during c-Si Solar Photovoltaic (SPV) module manufacturing," Sol. Energy Vol. 130, pp. 184-192, 2016. https://doi.org/10.1016/j.solener.2016.02.020
  20. Klemchuk P., Ezrin M., Lavigne G., Holley W., Galica J., and Agro S., “Investigation of the degradation and stabilization of EVA based encapsulant in field-aged solar energy modules,” Polymer Degradation and Stability, Vol. 55, No. 3, pp. 347–365, 1997. https://doi.org/10.1016/S0141-3910(96)00162-0
  21. Sinha A., Sastry, O.S., and Gupta R., "Nondestructive characterization of encapsulant discoloration effects in crystalline-silicon PV modules," Sol. Energy Mater. Sol. Cells Vol. 155, pp. 234-242, 2016. https://doi.org/10.1016/j.solmat.2016.06.019
  22. Chaturvedi P., Hoex B., and Walsh T. M., "Broken metal fingers in silicon wafer solar cells and PV modules," Sol. Energy Mater. Sol. Cells Vol. 108, pp. 78-81, 2013. https://doi.org/10.1016/j.solmat.2012.09.013
  23. Peeters J. R., Altamirano D., Dewulf W., and Duflou J. R., "Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders," Resources, Conservation and Recycling, Vol. 120, pp. 14-26, 2017. https://doi.org/10.1016/j.resconrec.2017.01.001
  24. Basri Y. E., Bressan M., Seguier L., Alawadhi H., and Alonso C., "A proposed graphical electrical signatures supervision method to study PV module failures," Sol. Energy Vol. 116, pp.247-256, 2015. https://doi.org/10.1016/j.solener.2015.02.048
  25. Hirschl Ch., Neumaier L., Muhleisen W., Zauner M., Oreski G., Eder G.C., Seufzer S., Berge Ch., Ruland E., and Kraft M., Sol. Energy Mater. Sol. Cells Vol. 152, pp. 10-20, 2016. https://doi.org/10.1016/j.solmat.2016.03.019
  26. Jorgensen G. J., Terwilliger K. M., DelCueto J. A., Glick S. H., Kempe M. D., Pankow F. J., Pern J. W., and McMahon T. J., "Moisture transport, adhesion, and corrosion protection of PV module packaging materials," Sol. Energy Mater. Sol. Cells Vol. 90, No. 16, pp. 2739-2775, 2006. https://doi.org/10.1016/j.solmat.2006.04.003
  27. Kempe M. D., Jorgensen G. J., Terwilliger K. M., McMahon T. J., Kennedy C. E., and Borek T. T., "Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices," Sol. Energy Mater. Sol. Cells Vol. 91, No. 4, pp. 315-329, 2007. https://doi.org/10.1016/j.solmat.2006.10.009
  28. Burdick J., and Pruett J., "Overview of photovoltaic module reliability testing at NREL," AIP Conference Proceedings Vol. 306 pp. 156-163, 1994.
  29. Jordan D. C., Kurtz S. R., VanSant K., and Newmiller J., "Compendium of photovoltaic degradation rates," Prog. Photovolt: Res. Appl. Vol. 24, pp. 978-989, 2016. https://doi.org/10.1002/pip.2744
  30. Koehl M., Heck M., and Wiesmeier S., "Modelling of conditions for accelerated lifetime testing of Humidity impact on PV-modules based on monitoring of climatic data," Sol. Energy Mater. Sol. Cells Vol. 99, pp. 282-291, 2012. https://doi.org/10.1016/j.solmat.2011.12.011
  31. Koehl M., Heck M., Wiesmeier S., and Wirth J., "Modeling of the nominal operating cell temperature based on outdoor weathering," Sol. Energy Mater. Sol. Cells Vol. 95, No. 7, pp. 1638-1646, 2011.
  32. Carlsson B., Mollera K., Kohl M., Heck M., Brunold S., Frei U., Marechal J.-C., and Jorgensen G., "The applicability of accelerated life testing for assessment of service life of solar thermal components," Sol. Energy Mater. Sol. Cells Vol. 84, No. 1-4, pp. 255-274, 2004. https://doi.org/10.1016/j.solmat.2004.01.046