DOI QR코드

DOI QR Code

Optical Characterization of Azo-dye Attached on Photonic Crystal: The Cause of Large Absorption Band Shift

  • Kim, Byoung-Ju (Department of New & Renewable Energy, Kyungil University) ;
  • Kwon, Ki-Chul (Department of New & Renewable Energy, Kyungil University) ;
  • Yu, A-Reum (Department of New & Renewable Energy, Kyungil University) ;
  • Kang, Kwang-Sun (Department of New & Renewable Energy, Kyungil University)
  • Received : 2017.03.10
  • Accepted : 2017.03.26
  • Published : 2017.06.30

Abstract

Large absorption band shift has been observed for the azo-dye (disperse red-13, DR-13) attached on the surface of silica spheres. Urethane linkage has been utilized to form covalent bond between azo-dye (-OH) and 3-isocyanatopropyltriethoxysilane (ICPTES, -N=C=O). The synthesized ICPTES-DR-13 (ICPDR) molecules were attached to the silica spheres by the hydrolysis and condensation reaction. Although the absorption peak of DR-13 in methanol is at 510 nm, the absorption peak of the ICPDR-silica spheres shifts to 788 nm. The large absorption peak shift is due to the formation of intramolecular charge-transfer band with large aggregated ICPDR.

Keywords

References

  1. S. Murai, S. Yao, T. Nakamura, T. Kawamoto, K. Fujita, K. Yano, and K. Tanaka, Appl. Phys. Lett. 101, 151121, 2012. https://doi.org/10.1063/1.4757608
  2. Y. Sivan, Appl. Phys. Lett. 101, 021111, 2012. https://doi.org/10.1063/1.4735319
  3. R. C. Schroden, C. F. Blanford, B. J. S. Melde, and A. Stein, Chem. Mater. 13, 1074, 2001. https://doi.org/10.1021/cm000830b
  4. Q. Zhang, and L. A. Archer, Macromolecules 37, 1928, 2004. https://doi.org/10.1021/ma035667v
  5. Y. Li, Y. Deng, Y. He, X. Tong, and X. Wang, Langmuir 21, 6567, 2005. https://doi.org/10.1021/la050082a
  6. S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, Langmuir 26, 11690, 2010. https://doi.org/10.1021/la101110t
  7. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Frechet, Nano Lett. 7, 1869, 2007. https://doi.org/10.1021/nl070333v
  8. Y. Chen, Y. Zhang, L. Shi, J. Li, Y. Xin, T. Yang, and Z. Guo, Appl. Phys. Lett. 101, 033701, 2012. https://doi.org/10.1063/1.4737167
  9. C. J. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11, 2006. https://doi.org/10.1021/nl0522983
  10. L. M. Goldenberg, O. V. Sakhno, T. V. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, Chem. Mater. 20, 4619, 2008. https://doi.org/10.1021/cm8005315
  11. H. Yusuf, W. G. Kim, D. H. Lee, M. Aloshyna, A. G. Brolo, and M. G. Moffitt, Langmuir 23, 5251, 2007. https://doi.org/10.1021/la7002904
  12. H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, Appl. Phys. Lett. 101, 091102, 2012. https://doi.org/10.1063/1.4747168
  13. Z. Cai, J. Teng, D. Xia, and X. S. Zhao, J. Phys. Chem. C 115, 9970, 2011. https://doi.org/10.1021/jp201674x
  14. H. Duan, and K. K. Berggren, Nano Lett. 10, 3710 (2010). https://doi.org/10.1021/nl102259s
  15. H. Niu, Q. Chen, M. Ning, Y. Jia, and X. Wang, J. Phys. Chem. B 108, 3996, 2004. https://doi.org/10.1021/jp0361172
  16. C. Paquet, and E.Kumacheva, Materialstoday 11, 48 (2008).
  17. H. H. Pham, I. Gourevich, E. N. Jonkman, and E. Kumacheva, J. Mater. Chem. 17, 523, 2007. https://doi.org/10.1039/B614491H
  18. J. Yu, J. Qiu, Y. Cui, J. Yu, L. Liu, L. Xu, and G. Qian, Mater Lett. 63, 2594, 2009. https://doi.org/10.1016/j.matlet.2009.09.019
  19. D. H. Choi, J. H. Park, J. H. Lee, and S. D. Lee, Thin Solid Films 360, 213, 2000. https://doi.org/10.1016/S0040-6090(99)00871-8
  20. Y. Cui, M. Wang, L. Chen, and G. Qian, Dyes and Pigments 62, 43, 2004. https://doi.org/10.1016/j.dyepig.2003.11.009
  21. C. Pavier, and A. Candini, Eur. Polym. J. 36, 1653, 2000. https://doi.org/10.1016/S0014-3057(99)00245-1
  22. A. Facchetti, A. Abbotto, L. Beverina, M. E. Boom, P. Dutta, G. Evmenenko, T. J. Marks, G. A. Pagani, Chem. Mater. 14, 4996, 2002. https://doi.org/10.1021/cm0205635