References
- Bjerg, P.L., Rogge, K., Pedersen, J.K., Christensen, T.H., (1995). Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill. Environ. Sci. Technol.., 29, 1387-1394. https://doi.org/10.1021/es00005a035
- Carlyle, G.C., Hill, AR. (2001). Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry. J. Hydrol. 247: 151-168. https://doi.org/10.1016/S0022-1694(01)00375-4
- Edwards, A.C., Twist, H., Codd, G.A. (2000). Assessing the impact of terrestrially derived phosphorus on flowing water systems, J. Environ. Qual. 29, 117-124.
- Ekholm, P., Krogerus, K. (2003). Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiol. 492, 29-42. https://doi.org/10.1023/A:1024857626784
- Edwards, A.C., Withers, P.J.A. (2007). Linking phosphorus sources to impacts in different types of water quality, Soil Use and Management, 23(1), pp. 133-143. https://doi.org/10.1111/j.1475-2743.2007.00110.x
- EPA (1989). Sampling Frequency for Groundwater Quality Mornitoring.
- Griffioen, J. (2006). Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater. J. Hydrol 320, 359-369. https://doi.org/10.1016/j.jhydrol.2005.07.047
- Hendricks, S.P., White, D.S. (2000). Streams and groundwater influences on phosphorus biogeochemistry. In : Streams and Ground Waters, Jones, J. B,, Mulholland, P. J., (eds). Academic Press: London; 221-235.
- House, W.A. (2003). Geochemical cycling of phosphorus in rivers. Applied Geochem. 18, 739-748. https://doi.org/10.1016/S0883-2927(02)00158-0
- Howden, N.J.K. Wheater, H.S,, Peach, D.W,, Butler, A.P. (2004). Hydrogeological Controls on Surface/Groundwater Interactions in a lowland permeable Chalk catchment. Hydrology: Science & Practice for the 21st Century, Vol. II. British Hydrological Society: The Netherlands.
- Hyun, Y.J., Kim, Y, S. Korea Environment Institute, (2013). Environmental and Management of Hyporheic Zones, 1773-1892.
- Hyun, Y.J. Korea Environment Institute (2014). Preliminary Study on Environmental Values of Ground water Resources in Korea,
- Isenbeck-Schroter, M., Doring, U., Moller, A., Schroter, J., Matthe, G. (1993). Experimental approach and simulation of the retention processes limiting orthophosphate transport in groundwater. J. Contam. Hydrol, 14 143-161. https://doi.org/10.1016/0169-7722(93)90036-R
- Jarvis I. (2006). The Santonian-Campanian phosphatic chalks of England and France. Proceedings of the Geologists Association, 117 219-237. https://doi.org/10.1016/S0016-7878(06)80011-8
- Jordan, P., Arnscheidt., J., McGrogan, H. McCormick, S. (2007). Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser, Hydrol. and Earth System Sciences, 11, 372-381. https://doi.org/10.5194/hess-11-372-2007
- Jung, J.Y., Kang, B.S., Cha, M.G. (2007). Separation of Baseflow using Antecedent Recession Requirement and Estimation of Representative Unit Hydrograph by the Nash model. Proceeding of Annual Conference of Korean Society of Water Resources, 1762-1767.
- Jang, W. S., J. Ryu, J.H., Kang, H.J., Lee, J.K., Kim K.J., Lim K.A. (2011) application and Evaluation of the NI, ESTIMATOR, LOADEST to estimate efficiently pollutant loadings from a stream J. Agric. Life Environ. Sci, 23, 1-10.
- Kim, S.H., Yun, S.T., Choi, K.T., Choi, B.Y., Kim, S.O., Kim, K.J., Kim, H.S., Lee, C.W. (2002). Nitrate contamination of alluvial groundwaters in the Keum River watershed area: Source and behaviors of nitrate, and suggestion to secure water supply, J. Eng. Geol, 12, 4, 471-484.
- Kim, Y.T., Woo, N.C., (2003). Nitrate contamination of shallow groundwater in an agricultural area having intensive livestock facilities. J. KoSSGE, 8, 57-67.
- Kim, G.H., Lee, H.S. (2009). Impacts of Nitrate in Base Flow Discharge on Surface Water Quality. J. Kor. S. Civil Eng, 29, 105-109.
- Kim, G.H. Ministry of Environment(2013). Guidelines for the Investigation of River Pollution Effects by Basin Runoff, 37-41.
- Kim, G.H. Korea Environmental Industry & Technology Institute(2017). De velopment of Post Management Evaluation Technology and Safety Assurance Technology for Livestock burial site.
- Lee, E.J., Woo, N.C., Lee, B.S., Kim, Y.B. (2008). Variation in nitrate contamination of shallow groundwater in a farmland in Gyeonggi-do, Korea. J. Korean Soc. Econo. Environ. Geol., 41, 393-403.
- Mohammad Z. I. (2001). Nitrate flux from aquifer storage in excess of baseflow contribution during a rain event. Wat. Res, 36, 788-792.
- Ministry of Environment, (2004). Comprehensive measures for managing non - point source pollution in 4 rivers. 44-45
- MLIT(Ministry of Land, Infrastructure and Transport)(2012). Ground Water Management Plan(2012-2021), 10-15.
- MAFRA(Ministry of Agriculture, Food and Rural Affalrs)(2015). Special operation procedure for Foot and Mouth Disease open Information : 146-147.
- MAFRA(Ministry of Agriculture, Food and Rural Affairs), http://www.open.go.kr (May, 30, 2017)
- Novotny, V. and Olem, H. (1993). Water Quality: Prevention, Identification, and Management of Diffuse Pollution, Van Nostrand Reinhold, New York.
- Pratt, D.L. (2009). Environmental impact of livestock mortalities burial (Doctoral dissertation).
- Park, J.G. Korea Environmental Industry & Technology Institute(2017). Development of Safe and Ecological Burial Techniques for Improving Carcasses Disposal System, Final Report.
- Stollenwerk, K.G. (1996). Simulation of phosphate transport in sewagecontaminated groundwater, Cape Cod, Massachusetts. Applied Geochem, 11, 317-324. https://doi.org/10.1016/0883-2927(95)00041-0
- Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeol. J, 10, 52-67. https://doi.org/10.1007/s10040-001-0170-8
- Schilling, K., Zhang, Y.K. (2004) Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA., J. Hydrol. 295, 305-316. https://doi.org/10.1016/j.jhydrol.2004.03.010
- Shin, Y.C., Ryu, C.W., Choi, Y.H., Lim, K.J., Choi, J.D. (2006) Pollutant load characteristics by baseflow in a small agricultural watershed, J. Korean Soc. Wat. Qual. 22. 244-249.
- Spahr, E., Neil, M., Dubrovsky, JoAnn, M., Gronberg, O., Legn, F., and David, M. W. (2010) Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006. USGS, Scientific Investigations Report 2010-5098.
- USGS (1998) Ground Water and Surface Water, A Single Resource, USGS Circular 1139, Denver, Colorado, 87.
- Ulen, B., Johansson, G., Kyllmar, K. (2001). Model predictions and long-term trends in phosphorus transport from arable lands in Sweden. Agric. Wat. Manage. 49, 197-210. https://doi.org/10.1016/S0378-3774(00)00145-1
- Wood FL, Heathwaite AL, Haygarth PM. (2005). Evaluating diffuse and point phosphorus contributions to river transfers at different scales in the Taw catchment, Devon, UK. Sci. Total Environ.t 304, 118-138.
- Withers, P.J.A., Haygarth, P.M. (2007). Agriculture, phosphorus and eutrophication: a European perspective. Soil Use Manag. 23. 1-4.
Cited by
- 국내 하천 기저유출지표 산정 및 도시화에 따른 기저유출 영향 분석 vol.52, pp.2, 2019, https://doi.org/10.3741/jkwra.2019.52.2.97
- Analysis of water budget through measurement of groundwater flux using seepage meters at Osongji in Jeonju-si vol.55, pp.4, 2019, https://doi.org/10.14770/jgsk.2019.55.4.461