DOI QR코드

DOI QR Code

Anti-Obesity Effect of Panax Ginseng in Animal Models: Study Protocol for a Systematic Review and Meta-Analysis

동물실험에서 인삼의 항비만 효과: 체계적 고찰과 메타분석을 위한 연구 프로토콜

  • Cho, Jae-Heung (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Kim, Koh-Woon (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Park, Hye-Sung (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Yoon, Ye-Ji (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Song, Mi-Yeon (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University)
  • 조재흥 (경희대학교 한의과대학 한방재활의학교실) ;
  • 김고운 (경희대학교 한의과대학 한방재활의학교실) ;
  • 박혜성 (경희대학교 한의과대학 한방재활의학교실) ;
  • 윤예지 (경희대학교 한의과대학 한방재활의학교실) ;
  • 송미연 (경희대학교 한의과대학 한방재활의학교실)
  • Received : 2017.05.09
  • Accepted : 2017.06.03
  • Published : 2017.06.30

Abstract

Recently the global epidemic problem of obesity has stimulated intense interest in the study of physiological mechanisms using animal models as a way to gain crucial data required for translation to human studies. Panax ginseng has been reported to have anti-obesity or antidiabetic effects in many animal studies; however, there have been few studies investigating human obesity. Herein, we will assess and examine the evidence supporting the anti-obesity effect of Panax ginseng in animal models with respect to anthropometric and metabolic outcomes. We will include controlled, comparative studies assessing the effect of Panax ginseng in preclinical studies of obesity. Panax ginseng will be administered during or following the induction of experimental obesity. The primary outcome measure will be anthropometric assessment and the secondary outcome measures will include adipose tissue weight, total amount of food consumed and metabolic parameters. We will search MEDLINE, Embase, PubMed, Web of Science, and Scopus without language, publication date, or other restrictions. Ethical approval will not be necessary as the data collected in this study will not be individual patient data, consequently there will be no concerns about violations of privacy. After finishing the whole procedure, the results will be disseminated by publication in a peer-reviewed journal or presented at a relevant conference. This protocol has been registered on the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) website (http://www.camarades.info).

최근 비만이 전 세계적인 문제로 대두되면서 임상 연구의 해석에 필요한 중요 자료를 제시해 줄 수 있는 동물 모델을 이용한 생리학적 기전 연구에 대한 관심이 높아지고 있다. 인삼은 많은 동물 실험에서 항비만 또는 항당뇨 효과가 보고되었으나 인체의 임상에서 비만을 연구한 논문은 거의 없는 실정이다. 이 연구에서는 신체계측치수와 대사지표를 활용한 동물 모델에서의 인삼의 항비만 효과의 근거수준을 평가하고자 한다. 전임상 단계에서 비만에 대한 인삼의 효과를 연구한 대조군 연구, 비교 연구를 포함시키고자 한다. 실험적으로 비만을 유도하는 도중 혹은 이후에 인삼을 투여하고, 일차평가변수는 신체계측치수, 이차평가변수는 지방조직의 무게, 섭취음식의 총량, 대사지표 등을 포함한다. 언어, 출판일 등 특별한 제한 없이 MEDLINE, Embase, PubMed, Web of Science, Scopus를 통해 논문 검색을 시행한다. 본 연구에서의 자료 수집은 개인 정보를 포함하지 않으며, 사생활 침해의 우려가 없으므로 윤리적 승인 대상에서 제외된다. 연구의 전체과정을 수행한 후 연구결과는 연관 저널에 출간하거나 관련 학회에 발표할 예정이다. 본 연구 프로토콜은 the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) website (http://www.camarades.info)에 등록되었다.

Keywords

References

  1. Pollack A. AMA recognizes obesity as a disease. New York : NY Times. 2013 : 18.
  2. The American Medical Association. AMA adopts new policies on second day of voting at annual meeting. Press Release. 2013 ; 21 : 35.
  3. Gortmaker SL, Swinburn BA, Levy D, Carter R, Mabry PL, Finegood D, et al. Changing the future of obesity: science, policy, and action. Lancet. 2011 ; 378(9793) : 838-47. https://doi.org/10.1016/S0140-6736(11)60815-5
  4. Nejat EJ, Polotsky AJ, Pal L. Predictors of chronic disease at midlife and beyond: the health risks of obesity. Maturitas. 2010 ; 65(2) : 106-11. https://doi.org/10.1016/j.maturitas.2009.09.006
  5. Brown WV, Fujioka K, Wilson PWF, Woodworth KA. Obesity: why be concerned? Am J Med. 2009 ; 122(4 Suppl 1) :S4-11. https://doi.org/10.1016/j.amjmed.2008.06.043
  6. Kaiyala KJ, Schwartz MW. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes. 2011 ; 60(1) : 17-23. https://doi.org/10.2337/db10-0909
  7. Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012 ; Chapter 5 : Unit5.61.
  8. Rastogi V, Santiago-Moreno J, Dore S. Ginseng: a promising neuroprotective strategy in stroke. Front Cell Neurosci. 2014 ; 8 :457.
  9. Jung NP, Jin SH. Studies on the physiological and biochemical effects of Korean ginseng. Korean J Ginseng Sci. 1996 ; 20 : 431-71.
  10. Han LK, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T, et al. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int J Obes Relat Metab Disord. 2001 ; 25(10) : 1459-64. https://doi.org/10.1038/sj.ijo.0801747
  11. Han LK, Zheng YN, Xu BJ, Okuda H, Kimura Y. Saponins from Platycodi Radix ameliorate high fat diet-induced obesity in mice. J Nutr. 2002 ; 132(8) : 2241-5. https://doi.org/10.1093/jn/132.8.2241
  12. Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M, et al. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine. 2002 ; 9(3) : 254-8. https://doi.org/10.1078/0944-7113-00106
  13. Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J Agric Food Chem. 2007 ; 55(8) : 2824-8. https://doi.org/10.1021/jf0628025
  14. Kim JH, Kang SA, Han SM, Sim I. Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res. 2009 ; 23(1) : 78-85. https://doi.org/10.1002/ptr.2561
  15. Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J Pharmacol Sci. 2005 ; 97(1) : 124-31. https://doi.org/10.1254/jphs.FP0040184
  16. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun. 2007 ; 364(4) : 1002-8. https://doi.org/10.1016/j.bbrc.2007.10.125
  17. Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS. Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-$\gamma$ signal pathways. Phytother Res. 2009 ; 23(2) : 262-6. https://doi.org/10.1002/ptr.2606
  18. Song YB, An YR, Kim SJ, Park HW, Jung JW, Kyung JS. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet. J Sci Food Agric. 2012 ; 92(2) : 388-96. https://doi.org/10.1002/jsfa.4589
  19. Peters JL, Sutton AJ, Jones DR, Rushton L, Abrams KR. A systematic review of systematic reviews and meta-analyses of animal experiments with guidelines for reporting. J Environ Sci Health B. 2006 ; 41 : 1245-58.
  20. Sena ES, Currie GL, McCann SK, Macleod MR, Howells DW. Systematic reviews and meta-analysis of preclinical studies: why perform them and how to appraise them critically. J Cereb Blood Flow Metab. 2014 ; 34(5) : 737-42. https://doi.org/10.1038/jcbfm.2014.28
  21. Vesterinen HM, Sena ES, Egan KJ, Hirst TC, Churolov L, Currie GL, et al. Meta-analysis of data from animal studies: a practical guide. J Neurosci Methods. 2014 ; 221 : 92-102. https://doi.org/10.1016/j.jneumeth.2013.09.010
  22. Leibel RL. Molecular physiology of weight regulation in mice and humans. Int J Obes. 2008 ; 32 Suppl 7 : S98-108. https://doi.org/10.1038/ijo.2008.245
  23. Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL. Is the energy homeostasis system inherently biased toward weight gain? Diabetes. 2003 ; 52(2) : 232-8. https://doi.org/10.2337/diabetes.52.2.232
  24. Woods SC. The control of food intake: behavioral versus molecular perspectives. Cell Metab. 2009 ; 9(6) : 489-98. https://doi.org/10.1016/j.cmet.2009.04.007
  25. Speakman J, Hambly C, Mitchell S, Krol E. Animal models of obesity. Obes Rev. 2007 ; 8(1) : 55-61. https://doi.org/10.1111/j.1467-789X.2007.00319.x
  26. McGowan J, Sampson M, Lefebvre C. An evidence based checklist for the peer review of electronic search strategies (PRESS EBC). Evid Based Libr Inf Pract. 2010 ; 5(1) : 149-54. https://doi.org/10.18438/B8SG8R
  27. De Vries RBM, Hooijmans CR, Tillema A, Leenaars M, Ritskes-Hoitinga M. A search filter for increasing the retrieval of animal studies in Embase. Lab Anim. 2011 ; 45(4) : 268-70. https://doi.org/10.1258/la.2011.011056
  28. Hooijmans CR, Tillema A, Leenaars M, Ritskes-Hoitinga M. Enhancing search efficiency by means of a search filter for finding all studies on animal experimentation in PubMed. Lab Anim. 2010 ; 44(3) : 170-5. https://doi.org/10.1258/la.2010.009117
  29. Leenaars M, Hooijmans CR, van Veggel N, ter Riet G, Leeflang M, Hooft L, et al. A step-by-step guide to systematically identify all relevant animal studies. Lab Anim. 2012 ; 46(1) : 24-31. https://doi.org/10.1258/la.2011.011087
  30. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. Int J Surg. 2010 ; 8(5) : 336-41. https://doi.org/10.1016/j.ijsu.2010.02.007
  31. Macleod MR, O'Collins T, Howells DW, Donnan GA. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke. 2004 ; 35(5) : 1203-8. https://doi.org/10.1161/01.STR.0000125719.25853.20
  32. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, National Centre for the Replacement, Refinement and Reduction of Amimals in Research. Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Cereb Blood Flow Metab. 2011 ; 31(4) : 991-3. https://doi.org/10.1038/jcbfm.2010.220
  33. Lamontagne F, Briel M, Duffett M, Fox-Robichaud A, Cook DJ, Guyatt G, et al. Systematic review of reviews including animal studies addressing therapeutic interventions for sepsis. Crit Care Med. 2010 ; 38(12) : 2401-8. https://doi.org/10.1097/CCM.0b013e3181fa0468
  34. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003 ; 327 : 557-60. https://doi.org/10.1136/bmj.327.7414.557
  35. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997 ; 315 : 629-34. https://doi.org/10.1136/bmj.315.7109.629
  36. Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sndercock P, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007 ; 334 : 197. https://doi.org/10.1136/bmj.39048.407928.BE
  37. Hooijmans CR, de Vries RBM, Rovers MM, Gooszen HG, Ritskes-Hoitinga M. The effects of probiotic supplementation on experimental acute pancreatitis: a systematic review and meta-analysis. PLoS One. 2012 ; 7 : e48811. https://doi.org/10.1371/journal.pone.0048811
  38. Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013 ; 10 : e1001482. https://doi.org/10.1371/journal.pmed.1001482
  39. Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I. Where is the evidence that animal research benefits humans? BMJ. 2004 ; 328 : 514-7. https://doi.org/10.1136/bmj.328.7438.514
  40. Howells DW, Sena ES, Macleod MR. Bringing rigour to translational medicine. Nat Rev Neurol. 2014 ; 10 : 37-43. https://doi.org/10.1038/nrneurol.2013.232
  41. Ritskes-Hoitinga M, Leenaars M, Avey M, Rovers M, Scholten R. Systematic reviews of preclinical animal studies can make significant contributions to health care and more transparent translational medicine. Cochrane Database Syst Rev. 2014 ; 3 : ED000078.

Cited by

  1. Effects of Panax ginseng on Obesity in Animal Models: A Systematic Review and Meta-Analysis vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/2719794
  2. 최근 10년간 한방비만학회지의 연구동향 분석: 2010-2019년 한방비만학회지 게재논문을 중심으로 vol.20, pp.2, 2017, https://doi.org/10.15429/jkomor.2020.20.2.149