DOI QR코드

DOI QR Code

Review of downslope windstorms in Japan

  • Received : 2017.03.03
  • Accepted : 2017.04.18
  • Published : 2017.06.25

Abstract

In Japan, at least 28 local winds are known by name, most of them associated with downslope windstorms and gap winds. To review these windstorms, we categorize them based largely on the atmospheric conditions and formation mechanisms, and then focus on representative examples. These representative cases include the "Yamaji­kaze", a typical downslope windstorm, the "Hirodo-­kaze", a downslope windstorm induced by a nearby typhoon (intense tropical cyclone), and the "Karak-kaze", a downslope wind with a clear diurnal variation. Other downslope winds such as the "Inami-kaze" and the gap wind "Kiyokawa­dashi" are also described. Among these winds, the "Yamaji-kaze", "Hirodo-kaze", and "Kiyokawa-dashi" are considered the three most notorious due to their destructive power. After describing and comparing these winds, we discuss remaining issues to be considered in future studies.

Keywords

Acknowledgement

Supported by : Council for Science, Technology and Innovation (CSTI)

References

  1. Aboshosha, H. and El Damatty, A. (2015), "Dynamic response of transmission line conductors under downburst and synoptic winds", Wind Struct., 21(2), 241-272. https://doi.org/10.12989/was.2015.21.2.241
  2. Adcroft, A., Hill, C. and Marshall, J. (1997), "Representation of topography by shaved cells in a height coordinate ocean model", Mon. Weather Rev., 125, 2293-2315. https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2
  3. Akiyama, T. (1954), "On the occurrence of the local severe wind "Yamaji". Part 1", J. Meteorol. Res., (Kenkyu Jiho). 6, 375-380. (in Japanese)
  4. Akiyama, T. (1956), "On the occurrence of the local severe wind "Yamaji"". Part 2", J. Meteorol. Res., (Kenkyu Jiho). 8, 627-641. (in Japanese)
  5. American Meteorological Society. (2016), Glossary of meteorology, http://glossary.ametsoc.org/wiki
  6. Arakawa, S. (2006), "Gap wind and its brief review", Tenki, 53, 161-166. (in Japanese)
  7. Arakawa, S. and Oobayashi, T. (1968), "On the numerical experiments by the method of characteristics of one-dimensional unsteady airflow over the mountain ridge", Papers in Meteorology and Geophysics, 19, 341-361. https://doi.org/10.2467/mripapers1950.19.3_341
  8. Arakawa, S., Yamada, K. and Toya, T. (1982), "A study of foehn in the Hokuriku district using the AMeDAS data", Papers in Meteorology and Geophysics, 33, 149-163. https://doi.org/10.2467/mripapers.33.149
  9. Brinkmann, W.A.R. (1971), "What is a foehn?", Weather, 26, 230-241. https://doi.org/10.1002/j.1477-8696.1971.tb04200.x
  10. Chow, F.K. and Street, R.L. (2009), "Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over Askervein hill", J. Appl. Meteorol. Clim., 48, 1050-1063. https://doi.org/10.1175/2008JAMC1862.1
  11. Clark, T.L. and Peltier, W.R. (1984), "Critical level reflection and the resonant growth of nonlinear mountain waves", J. Atmos. Sci.. 41, 3122-3134. https://doi.org/10.1175/1520-0469(1984)041<3122:CLRATR>2.0.CO;2
  12. Colle, B.A. and Mass, C.F. (2000), "High-resolution observations and numerical simulations of easterly gap flow through the strait of Juan de Fuca on 9-10 december 1995", Mon. Weather Rev., 128, 2398-2422. https://doi.org/10.1175/1520-0493(2000)128<2398:HROANS>2.0.CO;2
  13. Cook, A.W. and Topil, A.G. (1952), "Some examples of chinooks east of the mountains in Colorado", Bull. Am. Meteorol. Soc., 33, 42-47.
  14. Crook, A.N. and Tucker, D.F. (2005), "Flow over heated terrain. Part I: Linear theory and idealized numerical simulations", Mon. Weather Rev., 133, 2552-2564. https://doi.org/10.1175/MWR2964.1
  15. Deppe, A.J., Gallus Jr. W.A. and Takle, E.S. (2013), "A WRF ensemble for improved wind speed forecasts at turbine height", Weather Forecast., 28, 212-228. https://doi.org/10.1175/WAF-D-11-00112.1
  16. Durran, D.R. and Klemp, J. (1987), "Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers", J. Atmos. Sci., 44, 3402-3412. https://doi.org/10.1175/1520-0469(1987)044<3402:ALADWP>2.0.CO;2
  17. Fadlun, E.A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J. (2000), "Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations", J. Comput. Phys., 161, 35-60. https://doi.org/10.1006/jcph.2000.6484
  18. Fang, J. And Porte-Agel, F. (2016), "Intercomparison of terrain-following coordinate transformation and immersed boundary methods for large-eddy simulation of wind fields over complex terrain", J. Physics: Conference Series. 753.
  19. Fudeyasu, H., Kuwagata, T., Ohashi, Y., Suzuki, S., Kiyohara, Y. and Hozumi, Y. (2008), "Numerical study of the local downslope wind "Hirodo-kaze" in Japan", Mon. Weather Rev., 136, 27-40. https://doi.org/10.1175/2007MWR2049.1
  20. Grisogono, B. and Belusic, D. (2009), "A review of recent advances in understanding the meso-and micro-scale properties of the severe Bora wind", Tellus, 61, 1-16.
  21. Houghton, D.D. and Kasahara, A. (1968), "Non-linear shallow fluid over an isolated ridge", Commun. Pure Appl. Math., 21, 1-23. https://doi.org/10.1002/cpa.3160210103
  22. Iizuka, S. and Kondo, H. (2004), "Performance of various sub-grid scale models in large-eddy simulation of turbulent flow over complex terrain", Atmos. Environ., 38, 7083-7091. https://doi.org/10.1016/j.atmosenv.2003.12.050
  23. Ikawa, M. and Nagasawa, Y. (1989), "A numerical study of a dynamically induced foehn observed in the Abashiri-Ohmu area", J. Meteorol. Soc. Jpn., 67, 429-458. https://doi.org/10.2151/jmsj1965.67.3_429
  24. Ikeda, R., Kusaka, H. and Iizuka, S. (2017), "Numerical simulation of flow over mountain using a local wind model with a generalized curvilinear coordinate", Private Communication.
  25. Ishii, S., Sasaki, K., Mizutani, K., Aoki, T., Itabe, T., Kanno, H., Matsushima, D., Sha, W., Noda, A., Sawada, M., Ujiie, M., Matsuura, Y. and Iwasaki, T. (2007), "Temporal evolution and spatial structure of the local easterly wind "Kiyokawa-Dashi" in Japan PART I: Coherent Doppler Lidar Observations", J. Meteorol. Soc. Jpn., 85, 797-813. https://doi.org/10.2151/jmsj.85.797
  26. Ishizaki, N. and Takayabu, I. (2009), "On the warming events over Toyama Plain by using NHRCM", SOLA. 5, 129-132. https://doi.org/10.2151/sola.2009-033
  27. Ito, J., Niino, H., Nakanishi, M. and Moeng, C.H. (2015), "An extension of the Mellor-Yamada model to the Terra Incognita zone for dry convective mixed layers in the free convection regime", Bound.-Lay. Meteorol., 157, 23-43. https://doi.org/10.1007/s10546-015-0045-5
  28. Jackson, P.L., Mayr, G. and Vosper, S. (2012), Dynamically-driven winds. p.121-218, in "Mountain Weather Research and Forecasting", (Eds., Chow, F.K., De Wekker, S.F.J., Snyder, B.J.), Springer.
  29. Janjic, Z.I. (1989), "On the pressure gradient force error in s-coordinate spectral models", Mon. Weather Rev., 117, 2285-2292. https://doi.org/10.1175/1520-0493(1989)117<2285:OTPGFE>2.0.CO;2
  30. Jaubert, G. and Stein, J. (2003), "Multiscale and unsteady aspects of a deep fohn event during MAP", Q. J. Roy. Meteorol. Soc., 129, 755-559. https://doi.org/10.1256/qj.02.38
  31. Kajishima, T., Ohta, T., Okazaki, K. and Miyake, Y. (1998), "High-order finite-difference method for incompressible flows using collocated grid system", JSME International, Ser. B., 41, 830-839. https://doi.org/10.1299/jsmeb.41.830
  32. Kitamura, Y. (2015), "Estimating dependence of the turbulent length scales on model resolution based on a priori analysis", J. Atmos. Sci., 72, 750-762. https://doi.org/10.1175/JAS-D-14-0189.1
  33. Klemp, J.B. and Durran, D.R. (1987), "Numerical modeling of bora winds", Meteorol. Atmos. Phys., 36, 215-227. https://doi.org/10.1007/BF01045150
  34. Koyanagi, T. and Kusaka, H. (2017), "Numerical simulation of the downslope windstorm "Inami-kaze" in Tonami plain using the WRF model with 50-m and 1-km resolution terrain data", Private Communication.
  35. Kusaka, H., Miya, Y. and Ikeda, R. (2011), "Effects of solar radiation amount and synoptic-scale wind on the local wind "Karakkaze" over the Kanto plain in Japan", J. Meteorol. Soc. Jpn, 89, 327-340. https://doi.org/10.2151/jmsj.2011-403
  36. Lepri, P., Kozmar, H., Vecenaj, Z. and Grisogono, B. (2014), "A summertime near-ground velocity profile of the Bora wind", Wind Struct., 19(5), 505-522. https://doi.org/10.12989/was.2014.19.5.505
  37. Lilly, D.K. and Klemp, J.B. (1979), "The effect of terrain shape on non-linear hydrostatic mountain waves", J. Fluid Mech., 95, 241-261. https://doi.org/10.1017/S0022112079001452
  38. Lin, Y.L. (2010), "Mesoscale Dynamics", Cambridge University Press, pp. 630.
  39. Lin, Y.L. and Wang, T.A. (1996), "Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge", J. Atmos. Sci., 53, 139-158. https://doi.org/10.1175/1520-0469(1996)053<0139:FRATDO>2.0.CO;2
  40. Lock, S.J., Bitzer, H.W., Coals, A., Gadian, A. and Mobbs, S. (2012), "Demonstration of a cut-cell representation of 3D orography for studies of atmospheric flows over very steep hills", Mon. Weather Rev., 140, 411-424. https://doi.org/10.1175/MWR-D-11-00069.1
  41. Lou, W.J., Wang, J.W., Chen, Y., Lv, Z.B. and Lu, M. (2016), "Effect of motion path of downburst on wind-induced conductor swing in transmission line", Wind Struct., 23(3), 41-59.
  42. Lundquist, K.A., Chow, F.K. and Lundquist, J.K. (2010), "An immersed boundary method for the weather research and forecasting model", Mon. Weather Rev., 138, 796-817. https://doi.org/10.1175/2009MWR2990.1
  43. Markowski, P. and Richardson, Y. (2010), "Mesoscale Meteorology in Midlatitudes" Wiley-Blackwell, 407.
  44. Maximiliano, V.M. and Nunez, N. (2003), "Analysis of three situations of the Foehn effect over the Andes (zonda wind) using the Eta-CPTEC regional model", Weather Forecast., 18, 481-501. https://doi.org/10.1175/1520-0434(2003)18<481:AOTSOT>2.0.CO;2
  45. Michioka, T. and Chow, F.K. (2008), "High-resolution large-eddy simulations of scalar transport in atmospheric boundary layer flow over complex terrain", J. Appl. Meteorol. Clim., 47, 3150-3169. https://doi.org/10.1175/2008JAMC1941.1
  46. Moeng, C.H., Dudhia, J., Klemp, J. and Sullivan, P. (2007), "Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model", Mon. Weather Rev., 135, 2295-2311. https://doi.org/10.1175/MWR3406.1
  47. Mori, K. and Sato, T. (2014), "Spatio-temporal variation of high-temperature events in Hokkaido, North Japan", J. Meteorol. Soc. Jpn, 92, 327-346. https://doi.org/10.2151/jmsj.2014-404
  48. Norte, F.A., Ulke, A.G., Simonelli, S.C. and Viale, M. (2008), "The severe zonda wind event of 11 July 2006 east of the Andes Cordillera (Argentine): a case study using the BRAMS model", Meteorol. Atmos. Phys., 102, 1-14. https://doi.org/10.1007/s00703-008-0011-6
  49. Oard, M.J. (1993), "A method for predicting Chinook winds east of the Montana Rockies", Weather Forecast., 8, 166-180. https://doi.org/10.1175/1520-0434(1993)008<0166:AMFPCW>2.0.CO;2
  50. Overland, J.E. and Walter, B.A. (1981), "Gap winds in the Strait of Juan de Fuca", Mon. Weather Rev., 109, 2221-2233. https://doi.org/10.1175/1520-0493(1981)109<2221:GWITSO>2.0.CO;2
  51. Peltier, W.R. and Clark, T.L. (1983), "Nonlinear mountain waves in two and three spatial dimensions", Q. J. Roy. Meteorol. Soc., 109, 527-548. https://doi.org/10.1002/qj.49710946106
  52. Pielke, R.A. (2001), "Mesoscale Meteorological Modeling", 2nd Ed., Academic Press.
  53. Pitts, R.O. and Lyons, T.J. (1989), "Airflow over a two-dimensional escarpment. I: Observations", Q. J. Roy. Meteorol. Soc., 115, 965-981. https://doi.org/10.1002/qj.49711548810
  54. Pitts, R.O. and Lyons, T.J. (1990), "Airflow over a two-dimensional escarpment. II: Hydrostatic flow", Q. J. Roy. Meteorol. Soc., 116, 363-378. https://doi.org/10.1002/qj.49711649207
  55. Ramachandran, S. and Wyngaard, J.C. (2011), "Subfilter-scale modelling using transport equations: large-eddy simulation of the moderately convective atmospheric boundary layer", Bound.-Lay. Meteorol., 139, 1-35. https://doi.org/10.1007/s10546-010-9571-3
  56. Raphael, M.N. (2003), "The Santa Ana winds of California", Earth Interactions, 7, 1-13.
  57. Reed, T.R. (1931), "Gap winds of the Strait of Juan de Fuca", Mont. Weather Rev., 59, 373-376. https://doi.org/10.1175/1520-0493(1931)59<373:GWOTSO>2.0.CO;2
  58. Reinecke, P.A. and Durran, D.R. (2009), "Initial condition sensitivities and the predictability of downslope winds", J. Atmos. Sci., 66, 3401-3418. https://doi.org/10.1175/2009JAS3023.1
  59. Sahashi, K. (1988), "A roll accompanied by HIROTO-KAZE", Tenki, 35, 497-499. (in Japanese)
  60. Saito, K. (1993), "A numerical study of the local downslope wind "Yamaji-kaze" in Japan. Part 2: Non-linear aspect of the 3-D flow over a mountain range with a col.", J. Meteorol. Soc. Jpn, 71, 247-271. https://doi.org/10.2151/jmsj1965.71.2_247
  61. Saito, K. (1994), "A numerical study of the local downslope wind "Yamaji-kaze" in Japan. Part 3: Numerical simulation of the 27 September 1991 windstorm with a nonhydrostatic multi-nested model", J. Meteorol. Soc. Jpn, 72, 301-329. https://doi.org/10.2151/jmsj1965.72.2_301
  62. Saito, K. and Ikawa, M. (1991), "A numerical study of the local downslope wind "Yamaji-kaze" in Japan", J. Meteorol. Soc. Jpn, 69, 31-56. https://doi.org/10.2151/jmsj1965.69.1_31
  63. Sasaki, K., Kanno, H., Yokoyama, K., Matsushima, D., Moriyama, M., Fukabori, K. And Sha, W. (2004), "Observational evidence of the spatial distribution of wind speed and the vertical structure of the local easterly strong wind "Kiyokawa-dashi" on the Shonai Plain, Yamagata", Tenki, 51, 881-894. (in Japanese)
  64. Sasaki, K., Sawada, M., Ishiim, S., Kanno, H., Mizutani, K., Aoki, T., Itabe, T., Matsushima, D., Sha, W., Noda, A.T., Ujiie, M., Matsuura, Y. and Iwasaki, T. (2010), "The temporal evolution and spatial structure of the local easterly wind "Kiyokawa-dashi" in Japan. Part II: Numerical simulations", J. Meteorol. Soc. Jpn, 88, 161-181. https://doi.org/10.2151/jmsj.2010-204
  65. Satomura, T. (1989), "Compressible flow simulations on numerically generated grids", J. Meteorol. Soc. Jpn, 67, 473-482. https://doi.org/10.2151/jmsj1965.67.3_473
  66. Seibert, P. (1990), "South foehn studies since the ALPEX experiment", Meteorol. Atmos. Phys., 43, 91-103. https://doi.org/10.1007/BF01028112
  67. Shin, H.H. and Hong, S.Y. (2014), "Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions", Mon. Weather Rev., 143, 250-271.
  68. Smith, R.B. (1985), "On severe downslope winds", J. Atmos. Sci., 42, 2597-2603. https://doi.org/10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2
  69. Smith, R.B. (1987), "Aerial observations of the Yugoslavian bora", J. Atmos. Sci., 44, 269-297. https://doi.org/10.1175/1520-0469(1987)044<0269:AOOTYB>2.0.CO;2
  70. Solari, G. (2014), "Emerging issues and new frameworks for wind loading on structures in mixed climates", Wind Struct., 19(3), 295-320. https://doi.org/10.12989/was.2014.19.3.295
  71. Solari, G., Burlando, M., De Gaetano, P. and Repetto, M.P. (2015), "Characteristics of thunderstorms relevant to the wind loading of structures", Wind Struct., 20(6), 763-791. https://doi.org/10.12989/was.2015.20.6.763
  72. Sommers, W.T. (1978), "LFM forecast variables related to Santa Ana wind occurrences", Mon. Weather Rev., 106, 1307-1316. https://doi.org/10.1175/1520-0493(1978)106<1307:LFVRTS>2.0.CO;2
  73. Steppeler, J., Bitzer, H. W., Janjic, Z., Schattler, U., Prohl, P., Gjertsen, U., Torrisi, L., Parfinievicz, J., Avgoustoglou, E. and Damrath, U. (2006), "Prediction of clouds and rain using a z-coordinate nonhydrostatic model", Mon. Weather Rev., 134, 3625-3643. https://doi.org/10.1175/MWR3331.1
  74. Steppeler, J., Bitzer, H.W., Minotte, M. and Bonaventura, L. (2002), "Nonhydrostatic atmospheric modeling using a z-coordinate representation", Mon. Weather Rev., 130, 2143-2149. https://doi.org/10.1175/1520-0493(2002)130<2143:NAMUAZ>2.0.CO;2
  75. Sundqvist, H. (1976), "On vertical interpolation and truncation in connection with use of sigma system models", Atmosphere, 14, 37-52.
  76. Takane, Y. and Kusaka, H. (2011), "Formation mechanisms of the extreme high surface air temperature of $40.9^{\circ}C$ observed in the Tokyo metropolitan area: Considerations of dynamic foehn and foehn like wind", J. Appl. Meteorol. Clim., 50, 1827-1841. https://doi.org/10.1175/JAMC-D-10-05032.1
  77. Takane, Y., Kusaka, H. and Kondo, H. (2016), "Investigation of a recent extreme high-temperature event in the Tokyo metropolitan area using numerical simulations: the potential role of a 'hybrid' foehn wind", Q. J. Roy. Meteorol. Soc., 141, 1857-1869.
  78. Talbot, C., Bou-Zeid, E. and Smith, J. (2012), "Nested mesoscale large-eddy simulations with WRF: Performance in real test cases", J. Hydrometeorol., 13, 1421-1441. https://doi.org/10.1175/JHM-D-11-048.1
  79. Tseng, Y.H. and Ferziger, J.H. (2003), "A ghost-cell immersed boundary method for flow in complex geometry", J. Comput. Phys., 192, 593-623. https://doi.org/10.1016/j.jcp.2003.07.024
  80. Vosper, S.B. (2004), "Inversion effects on mountain lee waves", Q. J. Roy. Meteorol. Soc., 130, 1723-1748. https://doi.org/10.1256/qj.03.63
  81. Vosper, S.B., Sheridan, P.F. and Brown A.R. (2006), "Flow separation and rotor formation beneath two-dimensional trapped lee waves", Q. J. Roy. Meteorol. Soc., 132, 2415-2438. https://doi.org/10.1256/qj.05.174
  82. Wyngaard, J.C. (2004), "Toward numerical modeling in the "Terra Incognita", J. Atmos. Sci., 61, 1816-1826. https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2
  83. Wyszogrodzki, A.A., Miao, S. and Chen, F. (2012), "Evaluation of the coupling between mesoscale-WRF and LES‐EULAG models for simulating fine-scale urban dispersion", Atmos. Res.,118, 324-345. https://doi.org/10.1016/j.atmosres.2012.07.023
  84. Yamazaki, H. and Satomura, T. (2010), "Nonhydrostatic atmospheric modeling using a combined Cartesian grid", Mon. Weather Rev., 138, 3932-3945. https://doi.org/10.1175/2010MWR3252.1
  85. Yamazaki, H., Satomura, T. and Nikiforakis, N. (2016), "Three-dimensional cut-cell modelling for high-resolution atmospheric simulations", Q. J. Roy. Meteorol. Soc., 142, 1335-1350. https://doi.org/10.1002/qj.2736
  86. Yang, F.L. and Zhang, H.J. (2016), "Two case studies on structural analysis of transmission towers under downburst", Wind Struct., 22(6), 685-701. https://doi.org/10.12989/was.2016.22.6.685
  87. Yang, Q.L., Berg, L.K., Pekour, M., Fast, J.D. and Newson, R.N. (2013), "Evaluation of WRF-predicted near-hub-height winds and ramp events over a Pacific northwest site with complex terrain", J. Appl. Meteorol. Clim., 52, 1753-1763. https://doi.org/10.1175/JAMC-D-12-0267.1
  88. Ye, T., Mittal, R., Udaykumar, H.S. and Shyy, W. (1999), "An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries", J. Comput. Phys., 156, 209-240. https://doi.org/10.1006/jcph.1999.6356
  89. Yoshino, M. (1975), "Climate in a small area", 549, University of Tokyo Press, Tokyo, Japan.
  90. Zang, Y., Street, R.L. and Koseff, J.R. (1994), "A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equation in curvilinear coordinates", J. Comput. Phys., 114, 18-33. https://doi.org/10.1006/jcph.1994.1146
  91. Zangl, G. (2003), "A generalized sigma-coordinate system for the MM5", Mon. Weather Revi., 131, 2875-2884. https://doi.org/10.1175/1520-0493(2003)131<2875:AGSSFT>2.0.CO;2

Cited by

  1. A climatological study of the strongest local winds of Japan “Inami‐kaze” vol.40, pp.2, 2017, https://doi.org/10.1002/joc.6252
  2. Global climatology of synoptically‐forced downslope winds vol.41, pp.1, 2017, https://doi.org/10.1002/joc.6607
  3. Japan's south foehn on the Toyama Plain: Dynamical or thermodynamical mechanisms? vol.41, pp.11, 2017, https://doi.org/10.1002/joc.7133