• Title/Summary/Keyword: downslope windstorm

Search Result 9, Processing Time 0.026 seconds

Study on Mechanisms and Orographic Effect for the Springtime Downslope Windstorm over the Yeongdong Region (봄철 영동 지역 국지 하강풍 메커니즘과 지형 효과에 대한 연구)

  • Kim, Jung-Hoon;Chung, Il-Ung
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.67-83
    • /
    • 2006
  • The statistical analysis for the springtime windstorm in Korea shows that Yeongdong region has the highest occurrence frequency during recent 10 years. The objective of this study is to find possible mechanisms for the downslope windstorm formation in the Yeongdong region by using a mesoscale numerical model, WRF. Dynamical process, wave breaking (hereafter WB), is qualitatively investigated as the candidate mechanism for a windstorm event occurred in 5 April, 2005. WB is developed in upper troposphere downstream, since stable air is lifted by the Taebaek mountain. This process can cause and maintain the severe downslope windstorm by drawing the upper flow down to the surface. And the intensified downslope wind leads the hydraulic jump (hereafter HJ) in downstream region. Froude numbers at Chuncheon (upslope side), Seorak Mountain (crest), Yangyang (lee side), and the East Sea (distant downstream position) are estimated by about 0.4, 1.0, 1.6, and 0.6, respectively. This result implies that the accelerated and supercritical (Fr>1) flow adjusts to the ambient subcritical (Fr<1) conditions in the turbulent HJ. In addition, we find the formation of upstream inversion near top level of the mountain cause the intensification of HJ. Experiments to examine the orographic effect on the mechanisms suggest that the magnitudes of WB and HJ are larger in the experiment of higher topography, but there is no significant difference of windstorm magnitude among the experiments. Another important result from these sensitivity experiments is that the intensity of downslope windstorm strongly depends on the magnitude of upper (2~4 km) wind in upstream side.

Review of downslope windstorms in Japan

  • Kusaka, Hiroyuki;Fudeyasu, Hironori
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.637-656
    • /
    • 2017
  • In Japan, at least 28 local winds are known by name, most of them associated with downslope windstorms and gap winds. To review these windstorms, we categorize them based largely on the atmospheric conditions and formation mechanisms, and then focus on representative examples. These representative cases include the "Yamaji­kaze", a typical downslope windstorm, the "Hirodo-­kaze", a downslope windstorm induced by a nearby typhoon (intense tropical cyclone), and the "Karak-kaze", a downslope wind with a clear diurnal variation. Other downslope winds such as the "Inami-kaze" and the gap wind "Kiyokawa­dashi" are also described. Among these winds, the "Yamaji-kaze", "Hirodo-kaze", and "Kiyokawa-dashi" are considered the three most notorious due to their destructive power. After describing and comparing these winds, we discuss remaining issues to be considered in future studies.

Comparative Analysis of Observation and NWP Data of Downslope Windstorm Cases during 3-Dimensional Meteorological Observation Project in Yeongdong Region of Gangwon province, South Korea in 2020 (2020 강원영동 공동 입체기상관측 기간 강풍 사례에 대한 관측자료와 수치모델 비교 분석)

  • Kwon, Soon-Beom;Park, Se-Taek
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.395-404
    • /
    • 2021
  • In order to investigate downslope windstorm by using more detailed observation, we observed 6 cases at 3 sites - Inje, Yongpyeong, and Bukgangneung - during "3-D Meteorological Observation Project in Yeongdong region of Gangwon province, South Korea in 2020." The results from analysis of the project data were as follows. First, AWS data showed that a subsidence inversion layer appeared in 800~700 hPa on the windward side and 900~850 hPa on the leeward side. Second, before strong wind occurred, the inversion layer had descended to about 880~800 hPa. Third, with mountain wave breaking, downslope wind was intensified at the height of 2~3 km above sea level. After the downslope wind began to descend, the subsidence inversion layer developed. When the subsidence inversion layer got close to the ground, wind peak occurred. In general, UM (Unified Model) GDAPS (Global Data Assimilation Prediction System) have had negative bias in wind speed around peak area of Taebaek mountain range, and positive bias in that of East Sea coast area. The stronger wind blew, the larger the gap between observed and predicted wind speed by GDAPS became. GDAPS predicted strong p-velocity at 0600 LST 25 Apr 2020 (4th case) and weak p-velocity at 2100 LST 01 Jun 2020 (6th case) on the lee-side of Taebaek mountain range near Yangyang. As hydraulic jump theory was proved, which is known as a mechanism of downslope windstorm in Yeongdong region, it was confirmed that there is a relationship between p-velocity of lee-side and wind speed of eastern slope of Taebaek mountain range.

A Numerical Sensitivity Experiment of the Downslope Windstorm over the Yeongdong Region in Relation to the Inversion layer of Temperature (역전층이 영동 지역의 활강풍에 미치는 영향에 관한 민감도 수치실험 연구)

  • Lee, Jae Gyoo;In, So-Ra
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.331-344
    • /
    • 2009
  • A sensitivity study has been performed using ARPS (Advanced Regional Prediction System) version 5.2.10 in a downslope windstorm case of 12-13 February 2006. The purpose of this study was to find out the role of the inversion layer of temperature mainly in relation to the strength of the downslope winds over the Yeongdong region located downstream of the Taebaek mountains. Under the conditions of N (Brunt-$V{\ddot{a}}is{\ddot{a}}la$ frequency)=0.008 and N=0.016, the effects of the presence of the inversion layer, its variation of height of the layer, and the depth of the layer were identified. The sensitivity experiments suggested that the inversion layer effected the downstream wind speed of the mountains under both conditions of N=0.008 and N=0.016, and notably when the inversion layer was located near the mountain crest the downstream wind speed of the mountains was strong (~ $27ms^{-1}$) only under the condition of N=0.016. In addition, when the atmosphere was rather stable (N=0.016) and the depth of the layer was relatively thin (765 m) the downstream wind speed of the mountains was the strongest (~ $30ms^{-1}$) among the sensitivity experiments.

Characteristics of Long-term (2000~2020) Downslope Windstorm in the Yeongdong Region (영동지역 장기간(2000~2020년) 활강 강풍 특성)

  • Ji-Hoon Jeong;Byung-Gon Kim;Yu-jin Chae;Young-Gil Choi;Ji-Yoon Kim;Byung-Hwan Lim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Characteristics of downslope windstorm (DW) has been examined mainly based on 1-min average wind and the other meteorological conditions in the Yeongdong region for 2000~2020. First, a classification procedure for the downslope windstorm is proposed using surface wind speed (greater than 99 percentile), 1-hour longevity of strong wind (SW), westerly wind direction, low humidity (less than 20 percentile), and leeside warming. The number of DW days satisfying the proposed criteria is 221 (2.9% of total days and 47.5% of SW days) while the number of SW days is 465 (6.1% of total days) for 2000~2020. The occurrences of both SW and DW shows distinctive annual variation with its peak in April. In addition, mean wind speed of DW days is 8.2 m s-1 with its duration of 2 hr 30 min and relative humidity of 28% at Gangneung. An episode (7 May 2021) was selected by applying the proposed criteria to SW days of 2021. The sounding shows that the layer of wind speed greater than 25 m s-1 was lowered down to 925 hPa at Gangneung (leeside) relative to 850 hPa at Hoengseong (Wonju), in the afternoon along with significant warming and drying. Froude numbers of Wonju and Gangneung for the DW events were increased 4 and 5 times greater than those of normal days, respectively. This kind of DW long-term statistics in the leeside of the mountains is thought to build a foundation of further understanding DW mechanism.

Severe Downslope Windstorms of Gangneung in the Springtime (봄철 강릉지역에서 발생하는 강풍에 대한 연구)

  • Jang, Wook;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.207-224
    • /
    • 2008
  • Severe downslope windstorms observed at Gangneung, Korea in the springtime during the last 30 years are studied to understand their generation mechanisms. 92 severe wind cases are selected for which the maximum instantaneous wind speeds exceed two standard deviation of total mean plus ($18.7ms^{-1}$). They are categorized into the three mechanisms (hydraulic jump, partial reflection, and critical-level reflection) proposed in previous studies based on the flow condition, which is calculated using the wind and temperature profile observed at one upstream rawinsonde station, Osan. Among the three, partial reflection is found to be the most frequent mechanism for the last 30 years (1976 - 2005). To understand the role of inversion in generating severe downslope windstorms, horizontal velocity perturbation was calculated analytically for the atmosphere with an inversion layer. It turned out that the intensity of downslope wind was increased by inversion layer of specific heights, which are well matched with the observations. For better understanding the generation mechanisms, two-dimensional numerical simulations are conducted for the 92 severe wind cases using the ARPS model. In most simulations, surface wind speed exceeds the value of the severe-wind criterion, and each simulated case can be explained by its own generation mechanism. However, in most simulations, the simulated surface wind speed is larger than the observed, due to ignoring the flow-splitting effect in the two-dimensional framework.

Characteristics of Meteorological Variables in the Leeward Side associated with the Downslope Windstorm over the Yeongdong Region (영동지역 지형성 강풍과 관련된 풍하측 기상요소의 특징)

  • Cho, Young-Jun;Kwon, Tae-Yong;Choi, Byoung-Cheol
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.315-329
    • /
    • 2015
  • We investigated the characteristics of meteorological conditions related to the strong downslope wind over the leeward side of the Taebaek Mountains during the period 2005~2010. The days showing the strong wind exceeding $14ms^{-1}$ in Gangwon province were selected as study cases. A total of 15 days of strong wind were observed at Sokcho, Gangneung, Donghae, and Taebaek located over the Yeongdong region. Seven cases related to tropical cyclone (3 cases) and heavy snowfall (2 cases) and heavy rainfall (2 cases) over the Yeongdong region were excluded. To investigate the characteristics of the remaining 8 cases, we used synoptic weather chart, Sokcho radiosonde, Gangneung wind profiler and numerical model. The cases showed no precipitation (or ${\leq}1mm\;day^{-1}$). From the surface and upper level weather chart, we found the pressure distribution of southern high and northern low pattern over the Korean peninsula and warm ridge over the Yeongdong region. Inversion layer (or stable layer) and warm ridge with strong wind were located in about 1~3 km (925~700 hPa) over mountains. The Regional Data Assimilation and Prediction System (RDAPS) indicated that warm core and temperature ridge with horizontal temperature gradient were $0.10{\sim}0.23^{\circ}C\;km^{-1}$ which were located on 850 hPa pressure level above mountaintop. These results were summarized as a forecasting guidance of downslope windstorm in the Yeongdong region.

Diurnal Variation of Atomospheric Pollutant Concentrations Affected by Development of Windstorms along the Lee Side of Coastal Mountain Area

  • Choi, Hyo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.24 no.1
    • /
    • pp.29-45
    • /
    • 1996
  • Before (March 26, 1994) or after the occurrence of a downslope windstorm (March 29), the NO, $NO_2$, and $SO_2$ at the ground level of Kangnung city were monitored with high concentrations in the afternoon, due to a large amount of gases emitted from combustion of motor vehicle and heating apparatus, especially near 1600-1800 LST and 2000-2100 LST, but at night, they had low concentrations, resulting from small consumptions of vehicle and heating fuels. When both moderate westerly synoptic-scale winds flow over Mt. Taegwallyang and easterly meso-scale sea breeze during the day, atmospheric pollutants should be trapped by two different wind systems, resulting in higher concentration at Kangnung city in the afternoon. At night, the association of westerly synoptic wind and land breeze can produce relatively strong winds and the dissipation by the winds cause these low concentrations to lower and lower, as nightime goes on. From March 27 through 28, an enforced localized windstorm could be produced along the lee side of the mountain near Kangnung, generating westerly internal gravity waves with hydraulic jump motions. Sea breeze toward inland appartantly confines to the bottom of the eastern side of the mountain, due to the interruption of eastward violent internal gravity waves. As the windstorm moves down toward the ground, an encountering point of two opposite winds approaches Kangnung, and a great amount of NO and $NO_2$ were removed by the strong surface winds. Thus, their maximum concentrations are found to be near 18 and 20 LST, 17 and 21 LST. In the nighttime, the more developed storm should produce very strong surface winds and the NO and $NO_2$ could be easily dissipated into other place. The $SO_2$ concentration had no maximum value, that is, almost constant one all day long, due to its removal by the strong surface winds. Especially, the CO concentrations were slightly lower during the strom period than both before or after the strom, but they were nearly constant without much changes during the during the daytime and nighttime.

  • PDF

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF