DOI QR코드

DOI QR Code

Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures

  • Zhang, Shun-Qi (School of Mechatronic Engineering and Automation, Shanghai University) ;
  • Chen, Min (Department of Industrial Design, Xi'an Jiaotong - Liverpool University) ;
  • Zhao, Guo-Zhong (State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology) ;
  • Wang, Zhan-Xi (School of Mechanical Engineering, Northwestern Polytechnical University) ;
  • Schmidt, Rudiger (Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University) ;
  • Qin, Xian-Sheng (School of Mechanical Engineering, Northwestern Polytechnical University)
  • 투고 : 2016.09.26
  • 심사 : 2017.03.12
  • 발행 : 2017.06.25

초록

The complexity of macro-fiber composite (MFC) materials increasing the difficulty in simulation and analysis of MFC integrated structures. To give an accurate prediction of MFC bonded smart structures for the simulation of shape and vibration control, the paper develops a linear electro-mechanically coupled static and dynamic finite element (FE) models based on the first-order shear deformation (FOSD) hypothesis. Two different types of MFCs are modeled and analyzed, namely MFC-d31 and MFC-d33, in which the former one is dominated by the $d_{31}$ effect, while the latter one by the $d_{33}$ effect. The present model is first applied to an MFC-d33 bonded composite plate, and then is used to analyze both active shape and vibration control for MFC-d31/-d33 bonded plate with various piezoelectric fiber orientations.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China

참고문헌

  1. Azzouz, M.S., Mei, C. Bevan, J.S. and Ro, J.J. (2001), "Finite element modeling of MFC/AFC actuators and performance of MFC", J. Intell. Mat. Syst. Str., 12, 601-612. https://doi.org/10.1177/10453890122145384
  2. Azzouz, M.S. and Hall, C. (2010), "Nonlinear finite element analysis of a rotating MFC actuator", Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, April.
  3. Bent, A.A. and Hagood, N.W. (1997), "Piezoelectric fiber composite with integrated electrodes", J. Intel. Mat. Syst. Str., 8, 903-919. https://doi.org/10.1177/1045389X9700801101
  4. Bilgen, O., Erturk, A. and Inman, D.J. (2010), "Analytical and experimental characterization of macrofibercomposite actuated thin clamped-free unimorph benders", J. Vib. Acoust., 132(5), 051005. https://doi.org/10.1115/1.4001504
  5. Binette, P., Dano, M.L. and Gendron, G. (2009), "Active shape control of composite structures under thermal loading", Smart Mater. Struct., 18, 025007. https://doi.org/10.1088/0964-1726/18/2/025007
  6. Bowen, C.R., Giddings, P.F., Salo, A.I.T. and Kim, H.A. (2011), "Modeling and characterization of piezoelectrically actuated bistable composites", IEEE T. Ultrason. Ferr., 58(9), 1737-1750. https://doi.org/10.1109/TUFFC.2011.2011
  7. Dano, M.L., Gakwaya, M. and Julliere, B. (2008), "Compensation of thermally induced distortion in composites structures using macro-fiber composites", J. Intel. Mat. Syst. Str., 19, 225-233. https://doi.org/10.1177/1045389X06074679
  8. Gao, J.X. and Shen, Y.P. (2003), "Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators", J. Sound Vib., 264(4), 911-928. https://doi.org/10.1016/S0022-460X(02)01189-6
  9. Hagood, N., Kindel, R., Ghandi, K. and Gaudenzi, P. (1993), "Improving transverse actuation of piezoceramics using interdigitated surface electrodes", Proceedings of the SPIE-Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, SPIE: 1917, 341-352, Albuquerque, New Mexico.
  10. Irschik, H. (2002), "A review on static and dynamic shape control of structures by piezoelectric actuation", Eng. Struct., 24, 5-11. https://doi.org/10.1016/S0141-0296(01)00081-5
  11. Irschik, H., Krommer, M. and Pichler, U. (2003), "Dynamic shape control of beam-type structures by piezoelectric actuation and sensing", Int. J. Appl. Electromag. Mech., 17, 251-258.
  12. Kim, H.S., Sohn, J.W. and Choi, S.B. (2011), "Vibration control of a cylindrical shell structure using macro fiber composite actuators", Mech. Based Des. Struc., 39, 491-506. https://doi.org/10.1080/15397734.2011.577691
  13. Kioua, H. and Mirza, S. (2000), "Piezoelectric induced bending and twisting of laminated composite shallow shells", Smart Mate. Struct., 9, 476-484. https://doi.org/10.1088/0964-1726/9/4/310
  14. Konka, H.P., Wahab, M.A. and Lian, K. (2013), "Piezoelectric fiber composite transducers for health monitoring in composite structures", Sensor. Actuat. A-Phys., 194, 84-94. https://doi.org/10.1016/j.sna.2012.12.039
  15. Li, Y.X., Zhang, S.Q., Schmidt, R. and Qin, X.S. (2016), "Homogenization for macro-fiber composites using reissnermindlin plate theory", J. Intel. Mat. Syst. Str., 27(18), 2477-2488. https://doi.org/10.1177/1045389X16633763
  16. Lin, X.J., Zhou, K.C., Zhang, X.Y. and Zhang, D. (2013), "Development, modeling and application of piezoelectric fiber composites", T. Nonferrous Metals Soc. China, 23, 98-107. https://doi.org/10.1016/S1003-6326(13)62435-8
  17. Nader, M., Gattringer, H., Krommer, M. and Irschik, H. (2003), "Shape control of flexural vibrations of circular plates by shaped piezoelectric actuation", J. Vib. Acoust., 125(1), 88-94. https://doi.org/10.1115/1.1522418
  18. Padoin, E., Fonseca, J.S.O., Perondi, E.A. and Menuzzi, O. (2015), "Optimal placement of piezoelectric macro fiber composite patches on composite plates for vibration suppression", Latin Am. J. Solids Struct., 12(5), 925-947. https://doi.org/10.1590/1679-78251320
  19. Park, J.S. and Kim, J.H. (2005), "Analytical development of single crystal macro fiber composite actuators for active twist rotor blades", Smart Mater. Struct., 14, 745-753. https://doi.org/10.1088/0964-1726/14/4/033
  20. Ren, L. (2008), "A theoretical study on shape control of arbitrary lay-up laminates using piezoelectric actuators", Compos. Struct., 83, 110-118. https://doi.org/10.1016/j.compstruct.2007.10.030
  21. Schoeftner, J. and Irschik, H. (2011), "A comparative study of smart passive piezoelectric structures interacting with electric networks: Timoshenko beam theory versus finite element plane stress calculations", Smart Mater. Struct., 20, 025007. https://doi.org/10.1088/0964-1726/20/2/025007
  22. Skinner, D.P., Newnham, R.E. and Cross, L.J.E. (1978), "Flexible composite transducers", Mater. Res. Bull., 13(6), 599-607. https://doi.org/10.1016/0025-5408(78)90185-X
  23. Smart Material Corp (2016), http://www.smart-material.com.
  24. Sodano, H.A., Park, G. and Inman, D.J. (2004), "An investigation into the performance of macro-fiber composites for sensing and structural vibration applications", Mech. Syst. Signal Pr., 18(3), 683-697. https://doi.org/10.1016/S0888-3270(03)00081-5
  25. Song, H.J., Choi, Y.T., Wereley, N.M. and Purekar, A.S. (2010), "Energy harvesting devices using macro-fiber composite materials", J. Intel. Mat. Syst. Struct., 21, 647-658. https://doi.org/10.1177/1045389X10361633
  26. Wang, Z., Cao, Y., Zhao, Y. and Wang, Z. (2016), "Modeling and optimal design for static shape control of smart reflector using simulated annealing algorithm", J. Intel. Mat. Syst. Str., 27(5), 705-720. https://doi.org/10.1177/1045389X15577650
  27. Wilkie, W.K., Bryant, R.G., High, J.W., Fox, R.L., Hellbaum, R.F., Jalink, A., Little, B.D. and Mirick, P.H. (2000), "Low-cost piezocomposite actuator for structural control applications", SPIE-Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies, 3991, 323-334.
  28. Williams, R.B., Grimsley, B.W., Inman, D.J. and Wilkie, W.K. (2002a), "Manufacturing and mechanics-based characterization of macro fiber composite actuators", Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. New Orleans, Louisiana, USA, November.
  29. Williams, R.B., Wilkie, W.K. and Inman, D.J. (2002b), "An overview of composite actuators with piezoceramic fibers", Proceedings of the IMAC-XX: Conference & Exposition on Structural Dynamics, 4753, 421-427. Los Angeles, CA, USA.
  30. Zhang, S.Q., Li, Y.X. and Schmidt, R. (2015a), "Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities", Compos. Struct., 122, 239-249. https://doi.org/10.1016/j.compstruct.2014.11.031
  31. Zhang, S.Q., Li, Y.X. and Schmidt, R. (2015b), "Modeling and simulation of macro-fiber composite layered smart structures", Compos. Struct., 126, 89-100. https://doi.org/10.1016/j.compstruct.2015.02.051
  32. Zhang. S.Q. and Schmidt. R. (2014a), "Large rotation theory for static analysis of composite and piezoelectric laminated thinwalled structures", Thin Wall. Struct., 78, 16-25. https://doi.org/10.1016/j.tws.2013.12.007
  33. Zhang, S.Q. and Schmidt, R. (2014b), "Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations", Compos. Struct., 112, 345-357. https://doi.org/10.1016/j.compstruct.2014.02.029
  34. Zhang, S.Q., Schmidt, R., Muller, P.C. and Qin, X.S. (2015c), "Disturbance rejection control for vibration suppression of smart beams and plates under a high frequency excitation", J. Sound Vib., 353, 19-37. https://doi.org/10.1016/j.jsv.2015.05.018
  35. Zhang, S.Q., Wang, Z.X., Qin, X.S., Zhao, G.Z. and Schmidt, R. (2016), "Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators", Compos. Struct., 150, 62-72. https://doi.org/10.1016/j.compstruct.2016.04.037

피인용 문헌

  1. A review on modeling techniques of piezoelectric integrated plates and shells vol.30, pp.8, 2017, https://doi.org/10.1177/1045389x19836169