DOI QR코드

DOI QR Code

Various Factors Influencing the Lifetime of Suspension-Type Porcelain Insulators for 154 kV Power Transmission Lines

  • Received : 2017.03.22
  • Accepted : 2017.04.04
  • Published : 2017.06.25

Abstract

In this article, we investigated the various influencing factors that degraded the lifetime of suspension insulators in 154 kV transmission lines, and showed the possible solutions to avoid such breakdowns. With respect to achieve safety, reliability and aesthetical considerations, the characteristics of transmission and distribution network power cables should be improved. Suspension insulators are particularly important to study, as they have developed to be the main component of transmission lines due to their ability to withstand the electrical conductivity of high-voltage power transmission. Suspension insulators are mostly made from glass, rubber and ceramic material due to their high resistivity. In Korea, porcelain suspension insulators are typically used in the transmission line system, as they are cheaper and more flexible compared to other types of insulators. This is effective from preventing very high and steep lightening impulse voltages from causing the breakdown of suspension insulators used in power lines. Other influential factors affect the lifetime of suspension insulators that we studied include temperature, water moisture, contamination, mechanical vibration and electrical stress.

Keywords

References

  1. W. K. Lee, I. H. Choi, K. Y Shin, K. C. Hwang, and S.W. Han, Trans. Electr. Electron. Mater., 9, 147 (2008). [DOI: http://dx.doi.org/10.4313/TEEM.2008.9.4.147]
  2. S. W. Han, H. G. Cho, K. H. Park, D. I. Lee, and I. H. Choi, J. Kor. Inst. Electr. Electron. Mater. Eng., 16, 842 (2003). [DOI: http://dx.doi.org/10.4313/JKEM.2003.16.9.842]
  3. W. M. Carty and U. Senapati, J. Am. Ceram. Soc., 81, 3 (1998). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1998.tb02290.x]
  4. K. Hamano, Z. Nakagawa, and M. Hasegawa, J. Ceram. Soc. Jpn., 100, 1066 (1992). [DOI: http://doi.org/10.2109/jcersj.100.1066]
  5. J. E. Schroeder, Am. Ceram. Soc. Bull., 57, 526 (1978).
  6. M. Amin, M. Akbar, and M. Salman, Sci. China Ser. E-Tech. Sci., 50, 697 (2007). [DOI: http://dx.doi.org/10.1007/s11431-007-0053-x]
  7. L. Mattyasovszky-Zsolnay, J. Am. Ceram. Soc., 40, 299 (1957). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1957.tb12626.x]
  8. G. Gralik, A. L. Chinelatto, and A.S.A. Chinelatto, Ceramica, 60, 471 (2014). [DOI: http://dx.doi.org/10.1590/S0366-69132014000400004]
  9. W. E. Blodgett, Am. Ceram. Soc. Bull., 40, 74 (1961).
  10. G. Blaise and W. J. Sarjeant, Electrical aging and breakdown in dielectric materials (Academic press, 1999). p. 29.
  11. P. W. Olupot, S. Jonsson, and J. K. Byaruhanga, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 7, 267 (2013). [DOI: http://waset.org/publications/11565]
  12. E. Akbari, M. Mirzaie, A. Rahimnejad, and M. B. Asadpoor, Int. J. Eng. Tech., 1, 407 (2012).
  13. W. Chen, W. Wang, Q. Xia, B. Luo, and L. Li, Energies, 5, 2594 (2012). [DOI: http://dx.doi.org/10.3390/en5072594]
  14. K. Morita, Y. Susuki, and H. Nozaki, IEEE Trans. Power Del., 12, 850 (1997). [DOI: http://ieeexplore.ieee.org/document/584404/] https://doi.org/10.1109/61.584404
  15. S. W. Han, I. H. Choi, and D. I. Lee, Proc. Electrical Insulation Conference and Electrical Manufacturing Expo (Nashville, USA, 2007). [DOI: https://doi.org/10.1109/EEIC.2007.4562601]
  16. N.A.B. Thazali, Ph. D Investigations of ageing mechanism and electrical withstand performances of the field aged 132 kv pmu skudai's ceramic post insulator, p. 13, Universiti Tun Hussien Onn Malaysia, Johor (2013).
  17. J. Zheng, Q. Yu, and X. Chen, Proc. Second International Conference on properties and Applications of Properties and Applications of Dielectric Materials (Beijing, China, 1988). p. 16. [DOI: https://doi.org/10.1109/ICPADM.1988.38320]
  18. Shodhganga, Chapter 1, Introduction; http://shodhganga.inflibnet.ac.in/bitstream/10603/16454/6/06_chapter%201.pdf
  19. K. Morita and Y. Suzuki, IEEE Trans. Power Del., 12, 850 (1997). https://doi.org/10.1109/61.584404
  20. C. Sumereder, M. Muhr, and R. Woschitz, Unpublished material; https://online.tugraz.at/tug_online/voe_main2.getVo llText?pDocumentNr=36597&pCurrPk=9093.
  21. U. Schichler and E. Kynast, Proc. Presented originally at HIGHVOLT Kolloquium (Dresden, Germany, 2007).
  22. A. Roula, K. Boudeghdegh, and N. Boufafa, Ceramica, 55, 206 (2009). [DOI: http://dx.doi.org/10.1590/S0366-69132009000200014]
  23. M. Amin and M. Salman, Rev. Adv. Mater. Sci., 13, 93 (2006).
  24. S. W. Han, H. G. Cho, I. H. Choi, and D. I. Lee, Proc. IEEE International Symposion on Electrical Insulation (Toronto, Canada, 2006) p. 118. [DOI: https://doi.org/10.1109/ELINSL.2006.1665271]
  25. E. L. Brancato, IEEE Trans. Electr, Insul., 13, 308 (1978). [DOI: https://doi.org/10.1109/TEI.1978.298079]
  26. I. H. Choi, J. H. Choi, D. I. Lee, Y. G. Choi, H. G. Cho, S. W. Han, and Y. C. Park, J. Kor. Inst. Electr. Electron. Mater. Eng., 18, 96 (2005). [DOI: https://doi.org/10.4313/JKEM.2005.18.1.096]
  27. A. L. Hartzell, M. G. da Silva, and H. Shea, MEMs reliability, (Springer, 2011). p. 15. [ISBN: 978-1-4419-6017-7]