DOI QR코드

DOI QR Code

Bootstrap methods for long-memory processes: a review

  • Kim, Young Min (Department of Statistics, Kyungpook National University) ;
  • Kim, Yongku (Department of Statistics, Kyungpook National University)
  • 투고 : 2016.12.30
  • 심사 : 2017.01.06
  • 발행 : 2017.01.31

초록

This manuscript summarized advances in bootstrap methods for long-range dependent time series data. The stationary linear long-memory process is briefly described, which is a target process for bootstrap methodologies on time-domain and frequency-domain in this review. We illustrate time-domain bootstrap under long-range dependence, moving or non-overlapping block bootstraps, and the autoregressive-sieve bootstrap. In particular, block bootstrap methodologies need an adjustment factor for the distribution estimation of the sample mean in contrast to applications to weak dependent time processes. However, the autoregressive-sieve bootstrap does not need any other modification for application to long-memory. The frequency domain bootstrap for Whittle estimation is provided using parametric spectral density estimates because there is no current nonparametric spectral density estimation method using a kernel function for the linear long-range dependent time process.

키워드

참고문헌

  1. Adenstedt RK (1974). On large-sample estimation for the mean of a stationary sequence, The Annals of Statistics, 2, 1095-1107. https://doi.org/10.1214/aos/1176342867
  2. Beran J, Feng Y, Ghosh S, and Kulik R (2013). Long-Memory Processes : Probabilistic Properties and Statistical Methods, Springer, Berlin.
  3. Bickel PJ and Buhlmann P (1999). A new mixing notion and functional central limits theorems for a sieve bootstrap in time series, Bernoulli, 5, 413-446. https://doi.org/10.2307/3318711
  4. Brockwell PJ and Davis RA (1991). Time Series: Theory and Methods (2nd ed), Springer, New York.
  5. Buhlmann P (1997). Sieve bootstrap for time series, Bernoulli, 3, 123-148. https://doi.org/10.2307/3318584
  6. Carlstein E (1986). The use of subseries values for estimating the variance of a general statistic from a stationary sequence, The Annals of Statistics, 14, 1171-1179. https://doi.org/10.1214/aos/1176350057
  7. Choi E and Hall P (2000). Bootstrap confidence regions constructed from autoregressions of arbitrary order, Journal of the Royal Statistical Society Series B (Statistical Methodology), 62,461-477. https://doi.org/10.1111/1467-9868.00244
  8. Dahlhaus R and Janas D (1996). A frequency domain bootstrap for ratio statistics in time series analysis, The Annals of Statistics, 24, 1934-1963. https://doi.org/10.1214/aos/1069362304
  9. Davydov YA (1970). The invariance principle for stationary processes, Theory of Probability and Its Application, 15, 487-498. https://doi.org/10.1137/1115050
  10. Dzhaparidze K (1986), Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series, Springer, New York.
  11. Efron B (1979). Bootstrap methods: another look at the jackknife, The Annals of Statistics, 7, 1-26. https://doi.org/10.1214/aos/1176344552
  12. Franke J and Hardle W (1992). On bootstrapping kernel spectral estimates, The Annals of Statistics, 20, 121-145. https://doi.org/10.1214/aos/1176348515
  13. Granger CWJ and Joyeux R (1980). An introduction to long-memory time series models and fractional differencing, Journal of Time Series Analysis, 1, 15-29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
  14. Grenander U (1981). Abstract Inference, Wiley, New York.
  15. Hall P, Horowitz JL, and Jing BY (1995). On blocking rules for the bootstrap with dependent data, Biometrika, 82, 561-574. https://doi.org/10.1093/biomet/82.3.561
  16. Henry M and Zaffaroni P (2003). The long range dependence paradigm for macroeconomics and finance. In P. Doukhan, G. Oppenheim and MS Taqqu (Eds.), Theory and Applications of Long- Range Dependence (pp. 417-438), Birkhauser, Boston.
  17. Hosking JRM (1981). Fractional differencing, Biometrika, 68, 165-176. https://doi.org/10.1093/biomet/68.1.165
  18. Ibragimov IA and Linnik YV (1971). Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen.
  19. Kapetanios G and Psaradakis Z (2006). Sieve Bootstrap for Strongly Dependent Stationary Processes, Queen Mary University of London, Department of Economics, London.
  20. Kim YM and Nordman DJ (2011). Properties of a block bootstrap under long-range dependence, Sankhya A, 73, 79-109. https://doi.org/10.1007/s13171-011-0003-3
  21. Kim YM and Nordman DJ (2013). A frequency domain bootstrap for Whittle estimation under longrange dependence, Journal of Multivariate Analysis, 115, 405-420. https://doi.org/10.1016/j.jmva.2012.10.018
  22. Kim YM, Lahiri SN, and Nordman DJ (2013). A progressive block empirical likelihood method for time series, Journal of the American Statistical Association, 108, 1506-1516. https://doi.org/10.1080/01621459.2013.847374
  23. Kreiss JP (1992). Bootstrap procedures for AR(${\infty}$)-processes. In KH Jockel, G Rothe, andWSendler (Eds), Bootstrapping and Related Techniques(pp. 107-113), Springer, Heidelberg.
  24. Kreiss JP (1988). Asymptotic Statistical Inference for a Class of Stochastic Processes, Habilitationsschrift, Universitat Hamburg.
  25. Kreiss JP and Paparoditis E (2003). Autoregressive aided periodogram bootstrap for time series, The Annals of Statistics, 31, 1923-1955. https://doi.org/10.1214/aos/1074290332
  26. Kunsch HR (1989). The jackknife and the bootstrap for general stationary observations, The Annals of Statistics, 17, 1217-1241. https://doi.org/10.1214/aos/1176347265
  27. Lahiri SN (1993). On the moving block bootstrap under long range dependence, Statistics & Probability Letters, 18,405-413. https://doi.org/10.1016/0167-7152(93)90035-H
  28. Lahiri SN (1999). Theoretical comparisons of block bootstrap methods, The Annals of Statistics, 27, 386-404. https://doi.org/10.1214/aos/1018031117
  29. Lahiri SN (2003). Resampling Methods for Dependent Data, Springer, New York.
  30. Liu RY and Singh K (1992). Moving blocks jackknife and bootstrap capture weak dependence. In R LePage and L Billard (Eds), Exploring the Limits of Bootstrap (pp. 225-248), John Wiley & Sons, New York.
  31. Montanari A (2003). Long-range dependence in hydrology. In P Doukhan, G Oppenheim and M Taqqu (Eds), Theory and Applications of Long-Range Dependence (pp. 461-472), Birkhauser, Boston.
  32. Nordgaard A (1992). Resampling stochastic-processes using a bootstrap approach. In KH Jockel, G Rothe, and W Sendler (Eds), Bootstrapping and Related Techniques (pp. 181-185), Springer, Heidelberg.
  33. Poskitt DS (2008). Properties of the sieve bootstrap for fractionally integrated and non-invertible processes, Journal of Time Series Analysis, 29, 224-250. https://doi.org/10.1111/j.1467-9892.2007.00554.x
  34. Robinson PM (1995). Gaussian semiparametric estimation of long range dependence, The Annals of Statistics, 23, 1630-1661. https://doi.org/10.1214/aos/1176324317
  35. Shin DW and Hwang E (2015). Stationary bootstrapping for the nonparametric AR-ARCH model, Communications for Statistical Application and Methods, 22, 463-473. https://doi.org/10.5351/CSAM.2015.22.5.463
  36. Singh K (1981). On the asymptotic accuracy of the Efron's bootstrap, The Annals of Statistics, 9, 1187-1195. https://doi.org/10.1214/aos/1176345636
  37. Tousson O (1925). Memoire sur l'Histoire du Nil, Institut francais d'archeologie orientale, Cairo.
  38. Whittle P (1953). Estimation and information in stationary time series, Arkiv for Matematik, 2, 423-434. https://doi.org/10.1007/BF02590998
  39. Yajima Y (1989). A central limit theorem of Fourier transforms of strongly dependent stationary processes, Journal of Time Series Analysis, 10, 375-383. https://doi.org/10.1111/j.1467-9892.1989.tb00036.x
  40. Yoo JK (2015). Generalized partially double-index model: bootstrapping and distinguishing values, Communications for Statistical Application and Methods, 22, 305-312. https://doi.org/10.5351/CSAM.2015.22.3.305

피인용 문헌

  1. Parameter distribution characteristics of material fatigue life using improved bootstrap method pp.1530-7921, 2018, https://doi.org/10.1177/1056789518792658