• 제목/요약/키워드: block bootstrap

검색결과 21건 처리시간 0.024초

Bootstrap methods for long-memory processes: a review

  • Kim, Young Min;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2017
  • This manuscript summarized advances in bootstrap methods for long-range dependent time series data. The stationary linear long-memory process is briefly described, which is a target process for bootstrap methodologies on time-domain and frequency-domain in this review. We illustrate time-domain bootstrap under long-range dependence, moving or non-overlapping block bootstraps, and the autoregressive-sieve bootstrap. In particular, block bootstrap methodologies need an adjustment factor for the distribution estimation of the sample mean in contrast to applications to weak dependent time processes. However, the autoregressive-sieve bootstrap does not need any other modification for application to long-memory. The frequency domain bootstrap for Whittle estimation is provided using parametric spectral density estimates because there is no current nonparametric spectral density estimation method using a kernel function for the linear long-range dependent time process.

Bootstrap confidence intervals for classification error rate in circular models when a block of observations is missing

  • Chung, Hie-Choon;Han, Chien-Pai
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권4호
    • /
    • pp.757-764
    • /
    • 2009
  • In discriminant analysis, we consider a special pattern which contains a block of missing observations. We assume that the two populations are equally likely and the costs of misclassification are equal. In this situation, we consider the bootstrap confidence intervals of the error rate in the circular models when the covariance matrices are equal and not equal.

  • PDF

Bootstrap Confidence Intervals of Classification Error Rate for a Block of Missing Observations

  • Chung, Hie-Choon
    • Communications for Statistical Applications and Methods
    • /
    • 제16권4호
    • /
    • pp.675-686
    • /
    • 2009
  • In this paper, it will be assumed that there are two distinct populations which are multivariate normal with equal covariance matrix. We also assume that the two populations are equally likely and the costs of misclassification are equal. The classification rule depends on the situation when the training samples include missing values or not. We consider the bootstrap confidence intervals for classification error rate when a block of observation is missing.

경제위기시 환율신뢰구간 예측 알고리즘 개발 (Confidence interval forecast of exchange rate based on bootstrap method during economic crisis)

  • 김태윤;권오진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.895-902
    • /
    • 2011
  • 본 연구는 경제위기시 환율의 신뢰구간 예측 알고리즘을 개발하는 것을 주된 목적으로 한다. 경제위기시 환율의 움직임의 특징은 평상시에 비해 변동성이 극도로 증가한다는 점이다. 본 연구에서는 이러한 변동성을 효율적으로 추정하기 위해 시계열 데이터의 변동성 추정에 유용한 것으로 알려진 블록 붓스트랩 기법을 사용하여 그 유용성을 보인다.

Block Bootstrapped Empirical Process for Dependent Sequences

  • Kim, Tae-Yoon
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.253-264
    • /
    • 1999
  • Conditinal weakly convergence of the blockwise bootstrapped empirical process for stationary sequences to the appropriate Gaussian process is reestablished particularly for severely dependent $\alpha$-mixing sequences. Issue of block size is discussed from the point of validity of bootstrap method.

  • PDF

Conditional bootstrap confidence intervals for classification error rate when a block of observations is missing

  • Chung, Hie-Choon;Han, Chien-Pai
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.189-200
    • /
    • 2013
  • In this paper, it will be assumed that there are two distinct populations which are multivariate normal with equal covariance matrix. We also assume that the two populations are equally likely and the costs of misclassification are equal. The classification rule depends on the situation whether the training samples include missing values or not. We consider the conditional bootstrap confidence intervals for classification error rate when a block of observation is missing.

추세 시계열 자료의 부트스트랩 적용 (Applying Bootstrap to Time Series Data Having Trend)

  • 박진수;김윤배;송기범
    • 한국경영과학회지
    • /
    • 제38권2호
    • /
    • pp.65-73
    • /
    • 2013
  • In the simulation output analysis, bootstrap method is an applicable resampling technique to insufficient data which are not significant statistically. The moving block bootstrap, the stationary bootstrap, and the threshold bootstrap are typical bootstrap methods to be used for autocorrelated time series data. They are nonparametric methods for stationary time series data, which correctly describe the original data. In the simulation output analysis, however, we may not use them because of the non-stationarity in the data set caused by the trend such as increasing or decreasing. In these cases, we can get rid of the trend by differencing the data, which guarantees the stationarity. We can get the bootstrapped data from the differenced stationary data. Taking a reverse transform to the bootstrapped data, finally, we get the pseudo-samples for the original data. In this paper, we introduce the applicability of bootstrap methods to the time series data having trend, and then verify it through the statistical analyses.

WEAK CONVERGENCE FOR STATIONARY BOOTSTRAP EMPIRICAL PROCESSES OF ASSOCIATED SEQUENCES

  • Hwang, Eunju
    • 대한수학회지
    • /
    • 제58권1호
    • /
    • pp.237-264
    • /
    • 2021
  • In this work the stationary bootstrap of Politis and Romano [27] is applied to the empirical distribution function of stationary and associated random variables. A weak convergence theorem for the stationary bootstrap empirical processes of associated sequences is established with its limiting to a Gaussian process almost surely, conditionally on the stationary observations. The weak convergence result is proved by means of a random central limit theorem on geometrically distributed random block size of the stationary bootstrap procedure. As its statistical applications, stationary bootstrap quantiles and stationary bootstrap mean residual life process are discussed. Our results extend the existing ones of Peligrad [25] who dealt with the weak convergence of non-random blockwise empirical processes of associated sequences as well as of Shao and Yu [35] who obtained the weak convergence of the mean residual life process in reliability theory as an application of the association.

계절성 데이터의 부트스트랩 적용에 관한 연구 (A Study of Applying Bootstrap Method to Seasonal Data)

  • 박진수;김윤배
    • 한국시뮬레이션학회논문지
    • /
    • 제19권3호
    • /
    • pp.119-125
    • /
    • 2010
  • 시뮬레이션 출력 분석 방법인 이동 블록 부트스트랩이나 정상 부트스트랩, 그리고 임계값 부트스트랩은 자기상관성이 존재하는 데이터에 적용 가능한 표본 재추출 방법론들이다. 이러한 부트스트랩 방법들은 데이터의 정상성을 가정하여 적용해 왔다. 그러나 실제 자료 또는 시뮬레이션 출력에 계절성이나 추세를 동반하여 그 정상성을 보장할 수 없는 경우에는 부트스트랩을 시뮬레이션 출력 분석에 적용하지 못하였다. 시뮬레이션 출력 분석 기법 중 자기상관성을 가장 잘 묘사하는 방법은 임계값 부트스트랩 방법이다. 임계값 부트스트랩은 자료의 임계값을 기준으로 주기를 형성하여 재추출하는 방법으로써 계절성이 존재하는 데이터에 부트스트랩을 적용한다면 임계값 부트스트랩과 유사한 정확도를 얻을 수 있다. 본 논문에서는 계절성이 존재하는 시계열 자료에 대한 부트스트랩 적용 가능성을 제시 및 검증해보고자 한다.

붓스트랩 기법을 이용한 환율의 장단기 신뢰구간 예측 (Confidence interval forecast of exchange rate based on bootstrap method)

  • 권오진;김태윤;송규문
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.493-502
    • /
    • 2010
  • 환율의 신뢰구간을 예측하기 위해 가장 중요한 요인은 분포의 추정이다. 그러나 시계열 자료의 분포를 추정하는 것은 많은 어려움이 따른다. 본 연구에서는 변동률 합의 분포를 비모수기법 중의 하나인 블록화 붓스트랩 방법을 사용하여 추정한다. 따라서 좀 더 쉽고 정확한 환율의 장단기 신뢰구간 예측 모형을 제시한다.