초록
일반적으로 각 N개의 모집단에서 2개 이상의 표본이 추출되었을 때, $H_0:{\mu}_1={\cdots}={\mu}_N$의 가설에 대하여 검정할 수 있지만 각 모집단으로부터 표본이 한 개씩 추출된다면 ${\bar{X}}$가 존재하지 않으므로 모평균의 차이 검정은 불가능하다. 하지만 하나씩 추출된 표본으로 구성된 집단을 두 집단으로 나누어 임의의 평균을 생성함으로써 평균의 차이를 비교한다면 표본들 사이에 존재할 수 있는 이질성을 파악할 수 있다. 따라서 우리는 두 집단으로 나눌 수 있는 조합의 수만큼 평균 차이를 검정할 수 있는 최소 조합 t-검정 방법을 제안하고자 한다. 최종적으로 본 논문에서는 한 개씩 추출된 표본들 사이의 이질성을 확인하기 위하여 평균 차이를 검정할 수 있는 방법을 제안하였고 모의실험 연구를 통해 성능을 확인하였고 실제 자료 분석을 통해 결과를 도출하였다.
It is often possible to test for differences in population means when two or more samples are extracted from each N population. However, it is not possible to test for the mean difference if one sample is extracted from each population since a sample mean does not exist. But, by dividing a group of samples extracted one by one into two groups and generating a sample mean, we can identify a heterogeneity that may exist within the group by comparing the differences of the groups' mean. Therefore, we propose a minimum combination t-test method that can test the mean difference by the number of combinations that can be divided into two groups. In this paper, we proposed a method to test differences between means to check heterogeneity in a group of extracted samples. We verified the performance of the method by simulation study and obtained the results through real data analysis.